Do you want to publish a course? Click here

Orbital selective Fermi surface shifts and mechanism of high T$_c$ superconductivity in correlated AFeAs (A=Li,Na)

104   0   0.0 ( 0 )
 Added by Geunsik Lee
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Based on the dynamical mean field theory (DMFT) and angle resolved photoemission spectroscopy (ARPES), we have investigated the mechanism of high $T_c$ superconductivity in stoichiometric LiFeAs. The calculated spectrum is in excellent agreement with the observed ARPES measurement. The Fermi surface (FS) nesting, which is predicted in the conventional density functional theory method, is suppressed due to the orbital-dependent correlation effect with the DMFT method. We have shown that such marginal breakdown of the FS nesting is an essential condition to the spin-fluctuation mediated superconductivity, while the good FS nesting in NaFeAs induces a spin density wave ground state. Our results indicate that fully charge self-consistent description of the correlation effect is crucial in the description of the FS nesting-driven instabilities.



rate research

Read More

The mutual interaction between Cooper pairs is proposed as a mechanism for the superconducting state. Above $T_c$, pre-existing but fluctuating Cooper pairs give rise to the unconventional {it pseudogap} (PG) state, well-characterized by experiment. At the critical temperature, the pair-pair interaction induces a Bose-like condensation of these preformed pairs leading to the superconducting (SC) state. Below $T_c$, both the condensation energy and the pair-pair interaction $beta$ are proportional to the condensate density $N_{oc}(T)$, whereas the usual Fermi-level spectral gap $Delta_p$ is independent of temperature. The new order parameter $beta(T)$, can be followed as a function of temperature, carrier concentration and disorder - i.e. the phase diagrams. The complexity of the cuprates, revealed by the large number of parameters, is a consequence of the {it coupling of quasiparticles to Cooper-pair excitations}. The latter interpretation is strongly supported by the observed quasiparticle spectral function.
We present the zero-temperature superconducting (SC) ground states of the two-orbital asymmetric $t-J$ model on a square lattice by means of the auxiliary-boson approach. Besides the two-gap SC phase, we find an orbital selective SC (OSSC) phase, which is simultaneously SC in one orbit and normal in another orbit. The novel OSSC phase is stable only for sufficient asymmetric degree in orbital space and doping concentration. The pairing symmetry of the SC phase is s-wave-like in most doping regime, against the d-wave symmetry of the single-orbital $t-J$ model in a square lattice. The implication of the present scenario on multi-orbital heavy fermion and iron-based superconductors is also discussed.
Non-trivial topology and unconventional pairing are two central guiding principles in the contemporary search for and analysis of superconducting materials and heterostructure compounds. Previously, a topological superconductor has been predominantly conceived to result from a topologically non-trivial band subject to intrinsic or external superconducting proximity effect. Here, we propose a new class of topological superconductors which are uniquely induced by unconventional pairing. They exhibit a boundary-obstructed higher-order topological character and, depending on their dimensionality, feature unprecedently robust Majorana bound states or hinge modes protected by chiral symmetry. We predict the 112-family of iron pnictides, such as Ca$_{1-x}$La$_x$FeAs$_2$, to be a highly suited material candidate for our proposal, which can be tested by edge spectroscopy. Because of the boundary-obstruction, the topologically non-trivial feature of the 112 pnictides does not reveal itself for a bulk-only torus band analysis without boundaries, and as such had evaded previous investigations. Our proposal not only opens a new arena for highly stable Majorana modes in high-temperature superconductors, but also provides the smoking gun evidence for extended s-wave order in the iron pnictides.
Broken fourfold rotational (C$_4$) symmetry is observed in the experimental properties of several classes of unconventional superconductors. It has been proposed that this symmetry breaking is important for superconducting pairing in these materials, but in the high superconducting transition temperature (high-T$_{mathrm{c}}$) cuprates this broken symmetry has never been observed on the Fermi surface. We have measured a pronounced anisotropy in the angle dependence of the interlayer magnetoresistance of the underdoped high-T$_{mathrm{c}}$) superconductor YBa$_2$Cu$_3$O$_{6.58}$, directly revealing broken C$_4$ symmetry on the Fermi surface. Moreover, we demonstrate that this Fermi surface has C$_2$ symmetry of the type produced by a uniaxial or anisotropic density-wave phase. This establishes the central role of C$_4$ symmetry breaking in the Fermi surface reconstruction of YBa$_2$Cu$_3$O$_{6+delta}$, and suggests a striking degree of universality among unconventional superconductors.
In the family of the iron-based superconductors, the $RE$FeAsO-type compounds (with $RE$ being a rare-earth metal) exhibit the highest bulk superconducting transition temperatures ($T_{mathrm{c}}$) up to $55 textrm{K}$ and thus hold the key to the elusive pairing mechanism. Recently, it has been demonstrated that the intrinsic electronic structure of SmFe$_{0.92}$Co$_{0.08}$AsO ($T_{mathrm{c}}=18 textrm{K}$) is highly nontrivial and consists of multiple band-edge singularities in close proximity to the Fermi level. However, it remains unclear whether these singularities are generic to the $RE$FeAsO-type materials and if so, whether their exact topology is responsible for the aforementioned record $T_{mathrm{c}}$. In this work, we use angle-resolved photoemission spectroscopy (ARPES) to investigate the inherent electronic structure of the NdFeAsO$_{0.6}$F$_{0.4}$ compound with a twice higher $T_{mathrm{c}}=38 textrm{K}$. We find a similarly singular Fermi surface and further demonstrate that the dramatic enhancement of superconductivity in this compound correlates closely with the fine-tuning of one of the band-edge singularities to within a fraction of the superconducting energy gap $Delta$ below the Fermi level. Our results provide compelling evidence that the band-structure singularities near the Fermi level in the iron-based superconductors must be explicitly accounted for in any attempt to understand the mechanism of superconducting pairing in these materials.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا