Do you want to publish a course? Click here

The all-sky GEOS RR Lyr survey with the TAROT telescopes. Analysis of the Blazhko effect

219   0   0.0 ( 0 )
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We used the GEOS database to study the Blazhko effect of galactic RRab stars. The database is continuously enriched by maxima supplied by amateur astronomers and by a dedicated survey by means of the two TAROT robotic telescopes. The same value of the Blazhko period is observed at different values of the pulsation periods and different values of the Blazhko periods are observed at the same value of the pulsation period. There are clues suggesting that the Blazhko effect is changing from one cycle to the next. The secular changes in the pulsation and Blazhko periods of Z CVn are anticorrelated. The diagrams of magnitudes against phases of the maxima clearly show that the light curves of Blazhko variables can be explained as modulated signals, both in amplitude and in frequency. The closed curves describing the Blazhko cycles in such diagrams have different shapes, reflecting the phase shifts between the epochs of the brightest maximum and the maximum O-C. Our sample shows that both clockwise and anticlockwise directions are possible for similar shapes. The improved observational knowledge of the Blazhko effect, in addition to some peculiarities of the light curves, have still to be explained by a satisfactory physical mechanism.



rate research

Read More

RR Lyr is one of the most studied variable stars. Its light curve has been regularly monitored since the discovery of the periodic variability in 1899. Analysis of all observed maxima allows us to identify two primary pulsation states defined as pulsation over a long (P0 longer than 0.56684 d) and a short (P0 shorter than 0.56682 d) primary pulsation period. These states alternate with intervals of 13-16 yr, and are well defined after 1943. The 40.8 d periodical modulations of the amplitude and the period (i.e. Blazhko effect) were noticed in 1916. We provide homogeneous determinations of the Blazhko period in the different primary pulsation states. The Blazhko period does not follow the variations of P0 and suddenly diminished from 40.8 d to around 39.0 d in 1975. The monitoring of these periodicities deserved and deserves a continuous and intensive observational effort. For this purpose we have built dedicated, transportable and autonomous small instruments, Very Tiny Telescopes (VTTs), to observe the times of maximum brightness of RR Lyr. As immediate results the VTTs recorded the last change of P0 state in mid-2009 and extended the time coverage of the Kepler observations, thus recording a maximum O-C amplitude of the Blazhko effect at the end of 2008, followed by the historically smallest O-C amplitude in late 2013. This decrease is still ongoing and VTT instruments are ready to monitor the expected increase in the next few years.
Though FM Del has been considered as a RR Lyr star by Preston et al. in 1959 (following discovery by Huth, 1957), Huth (1960) eventually changed his mind by showing that it is in fact a cepheid of W Vir type of period of 3.95452 days. Various authors since then have considered it as a cepheid indeed, with the exception of Wils et al. (2006) who list this star in their RR Lyr catalog with a period of 0.79688 days. On this basis, FM Del was added to Tarot RR Lyr program. We present here these observations which confirm the cepheid type.
We present the results of collaborative observations of three RR Lyrae stars (CX Lyr, NU Aur and VY CrB) which have a strong Blazhko effect. This work has been initiated and performed in the framework of the GEOS RR Lyr Survey (Groupe Europeen dObservations Stellaires). From the measured light curves, we have determined the times and the magnitudes at maximum. The times of maxima have been compared to ephemerides to obtain the (O-C) values and from a period analysis of these (O-C) values, the Blazhko period is derived. The Blazhko periods of NU Aur (114.8 days) and VY CrB (32.3 days) are reported here for the first time and a more accurate period for CX Lyr (68.3 days) has been obtained. The three stars are subject to strong Blazhko effect, but this effect has different characteristics for each of them. When we compare the variations of magnitude at maximum and variations of (O-C) values with respect to the Blazhko phase, these variations are either in phase, in opposition, or even in quadrature.
The knowledge of accurate stellar parameters is a keystone in several fields of stellar astrophysics, such as asteroseismology and stellar evolution. Although the fundamental parameters can be derived both from spectroscopy and multicolour photometry, the results obtained are sometimes affected by systematic uncertainties. In this paper, we present a self-consistent spectral analysis of the pulsating star RR Lyr, which is the primary target for our study of the Blazhko effect. We used high-resolution and high signal-to-noise ratio spectra to carry out a consistent parameter determination and abundance analysis for RR Lyr. We provide a detailed description of the methodology adopted to derive the fundamental parameters and the abundances. Stellar pulsation attains high amplitudes in RR Lyrae stars, and as a consequence the stellar parameters vary significantly over the pulsation cycle. The abundances of the star, however, are not expected to change. From a set of available high-resolution spectra of RR Lyr we selected the phase of maximum radius, at which the spectra are least disturbed by the pulsation. Using the abundances determined at this phase as a starting point, we expect to obtain a higher accuracy in the fundamental parameters determined at other phases. The set of fundamental parameters obtained in this work fits the observed spectrum accurately. Through the abundance analysis, we find clear indications for a depth-dependent microturbulent velocity, that we quantified. We confirm the importance of a consistent analysis of relevant spectroscopic features, application of advanced model atmospheres, and the use of up-to-date atomic line data for the determination of stellar parameters. These results are crucial for further studies, e.g., detailed theoretical modelling of the observed pulsations.
The second Gaia data release is expected to contain data products from about 22 months of observation. Based on these data, we aim to provide an advance publication of a full-sky Gaia map of RR Lyrae stars. Although comprehensive, these data still contain a significant fraction of sources which are insufficiently sampled for Fourier series decomposition of the periodic light variations. The challenges in the identification of RR Lyrae candidates with (much) fewer than 20 field-of-view transits are described. General considerations of the results, their limitations, and interpretation are presented together with prospects for improvement in subsequent Gaia data releases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا