Do you want to publish a course? Click here

Recovering 3D structural properties of galaxies from SDSS-like photometry

154   0   0.0 ( 0 )
 Added by Elmo Tempel
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Because of the 3D nature of galaxies, an algorithm for constructing spatial density distribution models of galaxies on the basis of galaxy images has many advantages over surface density distribution approximations. We present a method for deriving spatial structure and overall parameters of galaxies from images and estimate its accuracy and derived parameter degeneracies on a sample of idealised model galaxies. The test galaxies consist of a disc-like component and a spheroidal component with varying proportions and properties. Both components are assumed to be axially symmetric and coplanar. We simulate these test galaxies as if observed in the SDSS project through ugriz filters, thus gaining a set of realistically imperfect images of galaxies with known intrinsic properties. These artificial SDSS galaxies were thereafter remodelled by approximating the surface brightness distribution with a 2D projection of a bulge+disc spatial distribution model and the restored parameters were compared to the initial ones. Down to the r-band limiting magnitude 18, errors of the restored integral luminosities and colour indices remain within 0.05 mag and errors of the luminosities of individual components within 0.2 mag. Accuracy of the restored bulge-to-disc ratios (B/D) is within 40% in most cases, and becomes worse for galaxies with low B/D, but the general balance between bulges and discs is not shifted systematically. Assuming that the intrinsic disc axial ratio is < 0.3, the inclination angles can be estimated with errors < 5deg for most of the galaxies with B/D < 2 and with errors < 15deg up to B/D = 6. Errors of the recovered sizes of the galactic components are below 10% in most cases. In general, models of disc components are more accurate than models of spheroidal components for geometrical reasons.



rate research

Read More

Our aim in this work is to answer, using simulated narrow-band photometry data, the following general question: What can we learn about galaxies from these new generation cosmological surveys? For instance, can we estimate stellar age and metallicity distributions? Can we separate star-forming galaxies from AGN? Can we measure emission lines, nebular abundances and extinction? With what precision? To accomplish this, we selected a sample of about 300k galaxies with good S/N from the SDSS and divided them in two groups: 200k objects and a template library of 100k. We corrected the spectra to $z = 0$ and converted them to filter fluxes. Using a statistical approach, we calculated a Probability Distribution Function (PDF) for each property of each object and the library. Since we have the properties of all the data from the {sc starlight}-SDSS database, we could compare them with the results obtained from summaries of the PDF (mean, median, etc). Our results shows that we retrieve the weighted average of the log of the galaxy age with a good error margin ($sigma approx 0.1 - 0.2$ dex), and similarly for the physical properties such as mass-to-light ratio, mean stellar metallicity, etc. Furthermore, our main result is that we can derive emission line intensities and ratios with similar precision. This makes this method unique in comparison to the other methods on the market to analyze photometry data and shows that, from the point of view of galaxy studies, future photometric surveys will be much more useful than anticipated.
115 - Y. C. Liang 2009
A large sample of low surface brightness (LSB) disk galaxies is selected from SDSS with B-band central surface brightness mu_0(B) from 22 to 24.5 mag arcsec^(-2). Some of their properties are studied, such as magnitudes, surface brightness, scalelengths, colors, metallicities, stellar populations, stellar masses and multiwavelength SEDs from UV to IR etc. These properties of LSB galaxies have been compared with those of the galaxies with higher surface brightnesses. Then we check the variations of these properties following surface brightness.
106 - J. Kamenetzky , G. C. Privon , 2018
Modeling of the spectral line energy distribution (SLED) of the CO molecule can reveal the physical conditions (temperature, density) of molecular gas in Galactic clouds and other galaxies. Recently, the Herschel Space Observatory and ALMA have offered, for the first time, a comprehensive view of the rotational J = 4-3 through J = 13-12 lines, which arise from a complex, diverse range of physical conditions that must be simplified to one, two, or three components when modeled. Here we investigate the recoverability of physical conditions from SLEDs produced by galaxy evolution simulations containing a large dynamical range in physical properties. These simulated SLEDs were generally fit well by one component of gas whose properties largely resemble or slightly underestimate the luminosity-weighted properties of the simulations when clumping due to non-thermal velocity dispersion is taken into account. If only modeling the first three rotational lines, the median values of the marginalized parameter distributions better represent the luminosity-weighted properties of the simulations, but the uncertainties in the fitted parameters are nearly an order of magnitude, compared to approximately 0.2 dex in the best-case scenario of a fully sampled SLED through J = 10-9. This study demonstrates that while common CO SLED modeling techniques cannot reveal the underlying complexities of the molecular gas, they can distinguish bulk luminosity-weighted properties that vary with star formation surface densities and galaxy evolution, if a sufficient number of lines are detected and modeled.
260 - J. Mendez-Abreu 2010
(Abridged) The structural parameters of a magnitude-limited sample of 148 unbarred S0-Sb galaxies were analyzed to derive the intrinsic shape of their bulges. We developed a new method to derive the intrinsic shape of bulges based on the geometrical relationships between the apparent and intrinsic shapes of bulges and disks. The equatorial ellipticity and intrinsic flattening of bulges were obtained from the length of the apparent major and minor semi-axes of the bulge, twist angle between the apparent major axis of the bulge and the galaxy line of nodes, and galaxy inclination. We found that the intrinsic shape is well constrained for a subsample of 115 bulges with favorable viewing angles. A large fraction of them is characterized by an elliptical section (B/A<0.9). This fraction is 33%, 55%, and 43% if using their maximum, mean, or median equatorial ellipticity, respectively. Most are flattened along their polar axis (C<(A+B)/2). The distribution of triaxiality is strongly bimodal. This bimodality is driven by bulges with Sersic index n>2, or equivalently, by the bulges of galaxies with a bulge-to-total ratio B/T>0.3. In particular, bulges with nleq2 and with B/Tleq0.3 show a larger fraction of oblate axisymmetric (or nearly axisymmetric) bulges, a smaller fraction of triaxial bulges, and fewer prolate axisymmetric (or nearly axisymmetric) bulges with respect to bulges with n>2 and with B/T>0.3, respectively. According to predictions of the numerical simulations of bulge formation, bulges with nleq2, which show a high fraction of oblate axisymmetric (or nearly axisymmetric) shapes and have B/Tleq0.3, could be the result of dissipational minor mergers. Both major dissipational and dissipationless mergers seem to be required to explain the variety of shapes found for bulges with n>2 and B/T>0.3.
We determine the intrinsic, 3-dimensional shape distribution of star-forming galaxies at 0<z<2.5, as inferred from their observed projected axis ratios. In the present-day universe star-forming galaxies of all masses 1e9 - 1e11 Msol are predominantly thin, nearly oblate disks, in line with previous studies. We now extend this to higher redshifts, and find that among massive galaxies (M* > 1e10 Msol) disks are the most common geometric shape at all z < 2. Lower-mass galaxies at z>1 possess a broad range of geometric shapes: the fraction of elongated (prolate) galaxies increases toward higher redshifts and lower masses. Galaxies with stellar mass 1e9 Msol (1e10 Msol) are a mix of roughly equal numbers of elongated and disk galaxies at z~1 (z~2). This suggests that galaxies in this mass range do not yet have disks that are sustained over many orbital periods, implying that galaxies with present-day stellar mass comparable to that of the Milky Way typically first formed such sustained stellar disks at redshift z~1.5-2. Combined with constraints on the evolution of the star formation rate density and the distribution of star formation over galaxies with different masses, our findings imply that, averaged over cosmic time, the majority of stars formed in disks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا