Do you want to publish a course? Click here

Dust formation around AGB and SAGB stars: a trend with metallicity?

112   0   0.0 ( 0 )
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We calculate the dust formed around AGB and SAGB stars of metallicity Z=0.008 by following the evolution of models with masses in the range 1M<M<8M throughthe thermal pulses phase, and assuming that dust forms via condensation of molecules within a wind expanding isotropically from the stellar surface. We find that, because of the strong Hot Bottom Burning (HBB) experienced, high mass models produce silicates, whereas lower mass objects are predicted to be surrounded by carbonaceous grains; the transition between the two regimes occurs at a threshold mass of 3.5M. These fndings are consistent with the results presented in a previous investigation, for Z=0.001. However, in the present higher metallicity case, the production of silicates in the more massive stars continues for the whole AGB phase, because the HBB experienced is softer at Z=0.008 than at Z=0.001, thus the oxygen in the envelope, essential for the formation of water molecules, is never consumed completely. The total amount of dust formed for a given mass experiencing HBB increases with metallicity, because of the higher abundance of silicon, and the softer HBB, both factors favouring a higher rate of silicates production. This behaviour is not found in low mass stars,because the carbon enrichment of the stellar surface layers, due to repeated Third Drege Up episodes, is almost independent of the metallicity. Regarding cosmic dust enrichment by intermediate mass stars, we find that the cosmic yield at Z=0.008 is a factor 5 larger than at Z=0.001. In the lower metallicity case carbon dust dominates after about 300 Myr, but at Z=0.008 the dust mass is dominated by silicates at all times,with a prompt enrichment occurring after about 40 Myr, associated with the evolution of stars with masses M =7.5 -8M.



rate research

Read More

239 - Martha L. Boyer 2012
We estimate the total dust input from the cool evolved stars in the Small Magellanic Cloud (SMC), using the 8 micron excess emission as a proxy for the dust-production rate. We find that Asymptotic Giant Branch (AGB) and red supergiant (RSG) stars produce (8.6-9.5) x 10^7 solar masses per year of dust, depending on the fraction of far-infrared sources that belong to the evolved star population (with 10%-50% uncertainty in individual dust-production rates). RSGs contribute the least (<4%), while carbon-rich AGB stars (especially the so-called extreme AGB stars) account for 87%-89% of the total dust input from cool evolved stars. We also estimate the dust input from hot stars and supernovae (SNe), and find that if SNe produce 10^-3 solar masses of dust each, then the total SN dust input and AGB input are roughly equivalent. We consider several scenarios of SNe dust production and destruction and find that the interstellar medium (ISM) dust can be accounted for solely by stellar sources if all SNe produce dust in the quantities seen around the dustiest examples and if most SNe explode in dense regions where much of the ISM dust is shielded from the shocks. We find that AGB stars contribute only 2.1% of the ISM dust. Without a net positive contribution from SNe to the dust budget, this suggests that dust must grow in the ISM or be formed by another unknown mechanism.
We observed the AGB stars S Ori, GX Mon and R Cnc with the MIDI instrument at the VLTI. We compared the data to radiative transfer models of the dust shells, where the central stellar intensity profiles were described by dust-free dynamic model atmospheres. We used Al2O3 and warm silicate grains. Our S Ori and R Cnc data could be well described by an Al2O3 dust shell alone, and our GX Mon data by a mix of an Al2O3 and a silicate shell. The best-fit parameters for S Ori and R Cnc included photospheric angular diameters Theta(Phot) of 9.7+/-1.0mas and 12.3+/-1.0mas, optical depths tau(V)(Al2O3) of 1.5+/-0.5 and 1.35+/-0.2, and inner radii R(in) of 1.9+/-0.3R(Phot) and 2.2+/-0.3R(Phot), respectively. Best-fit parameters for GX Mon were Theta(Phot)=8.7+/-1.3mas, tau(V)(Al2O3)=1.9+/-0.6, R(in)(Al2O3)=2.1+/-0.3R(Phot), tau(V)(silicate)=3.2+/-0.5, and R(in)(silicate)=4.6+/-0.2R(Phot). Our model fits constrain the chemical composition and the inner boundary radii of the dust shells, as well as the photospheric angular diameters. Our interferometric results are consistent with Al2O3 grains condensing close to the stellar surface at about 2 stellar radii, co-located with the extended atmosphere and SiO maser emission, and warm silicate grains at larger distances of about 4--5 stellar radii. We verified that the number densities of aluminum can match that of the best-fit Al2O3 dust shell near the inner dust radius in sufficiently extended atmospheres, confirming that Al2O3 grains can be seed particles for the further dust condensation. Together with literature data of the mass-loss rates, our sample is consistent with a hypothesis that stars with low mass-loss rates form primarily dust that preserves the spectral properties of Al2O3, and stars with higher mass-loss rate form dust with properties of warm silicates.
Detached shells are believed to be created during a thermal pulse, and constrain the time scales and physical properties of one of the main drivers of late stellar evolution. We aim at determining the morphology of the detached dust shells around the carbon AGB stars R Scl and V644 Sco, and compare this to observations of the detached gas shells. We observe the polarised, dust-scattered stellar light around these stars using the PolCor instrument mounted on the ESO 3.6m telescope. Observations were done with a coronographic mask to block out the direct stellar light. The polarised images clearly show the detached shells. Using a dust radiative transfer code to model the dust-scattered polarised light, we constrain the radii and widths of the shells to 19.5 arcsec and 9.4 arcsec for the detached dust shells around R Scl and V644 Sco, respectively. Both shells have an overall spherical symmetry and widths of approx. 2 arcsec. For R Scl we can compare the observed dust emission directly with high spatial-resolution maps of CO(3-2) emission from the shell observed with ALMA. We find that the dust and gas coincide almost exactly, indicating a common evolution. The data presented here for R Scl are the most detailed observations of the entire dusty detached shell to date. For V644 Sco these are the first direct measurements of the detached shell. Also here we find that the dust most likely coincides with the gas shell. The observations are consistent with a scenario where the detached shells are created during a thermal pulse. The determined radii and widths will constrain hydrodynamical models describing the pre-pulse mass loss, the thermal pulse, and post-pulse evolution of the star.
Dust formation and resulting mass loss around Asymptotic Giant Branch (AGB) stars with initial metallicity in the range of $0 leq Z_{rm ini} leq 10^{-4}$ and initial mass $2leq M_{rm ini}/M_{odot} leq 5$ are explored by the hydrodynamical calculations of dust-driven wind (DDW) along the AGB evolutionary tracks. We employ the MESA code to simulate the evolution of stars, assuming an empirical mass-loss rate in the post-main sequence phase, and considering the three types of low-temperature opacities (scaled-solar, CO-enhanced, and CNO-enhanced opacities) to elucidate the effect on the stellar evolution and the DDW. We find that the treatment of low-temperature opacity strongly affects the dust formation and resulting DDW; in the carbon-rich AGB phase, the maximum $dot{M}$ of $M_{rm ini} geq$ 3 $M_{odot}$ star with the CO-enhanced opacity is at least one order of magnitude smaller than that with the CNO-enhanced opacity. A wide range of stellar parameters being covered, a necessary condition for driving efficient DDW with $dot{M} ge 10^{-6}$ $M_{odot}$ yr$^{-1}$ is expressed as the effective temperature $T_{rm eff} lesssim 3850$ K and $log(delta_{rm C}L/kappa_{rm R} M) gtrsim 10.43log T_{rm eff}-32.33 $ with the carbon excess $delta_{rm C}$ defined as $epsilon_{rm C} - epsilon_{rm O}$ and the Rosseland mean opacity $kappa_{rm R}$ in units of cm$^2$g$^{-1}$ in the surface layer, and the stellar mass (luminosity) $M$ $(L)$ in solar units. The derived fitting formulae of gas and dust mass-loss rates in terms of input stellar parameters could be useful for investigating the dust yield from AGB stars in the early Universe being consistent with the stellar evolution calculations.
We present the results of our survey of 1612 MHz circumstellar OH maser emission from asymptotic giant branch (AGB) stars and red supergiants (RSGs) in the Large Magellanic Cloud. We have discovered four new circumstellar maser sources in the LMC, and increased the number of reliable wind speeds from IR stars in the LMC from 5 to 13. Using our new wind speeds, as well as those from Galactic sources, we have derived an updated relation for dust driven winds: $v_{exp} propto Z L^{0.4}$. We compare the sub-solar metallicity LMC OH/IR stars with carefully selected samples of more metal-rich OH/IR stars, also at known distances, in the Galactic Centre and Galactic Bulge. For 8 of the Bulge stars we derive pulsation periods for the first time, using near-IR photometry from the VVV survey. We have modeled our LMC OH/IR stars and developed an empirical method of deriving gas-to-dust ratios and mass loss rates by scaling the models to the results from maser profiles. We have done this also for samples in the Galactic Centre and Bulge and derived a new mass loss prescription that includes luminosity, pulsation period, and gas-to-dust ratio $dot{M} = 1.06^{+3.5}_{-0.8} rm{ cdot }10^{-5},(L/10^4,rm{L}_odot)^{0.9pm0.1}(P/500,rm{d})^{0.75pm0.3} (r_{gd}/200)^{-0.03pm0.07},rm{M_{odot}}, yr^{-1}$. The tightest correlation is found between mass loss rate and luminosity. We find that the gas-to-dust ratio has little effect on the mass loss of oxygen-rich AGB stars and RSGs within the Galaxy and the LMC. This suggests that mass loss of oxygen-rich AGB stars and RSGs is (nearly) independent of metallicity between a half and twice solar.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا