Critical manifold of the Potts model: Exact results and homogeneity approximation


Abstract in English

The $q$-state Potts model has stood at the frontier of research in statistical mechanics for many years. In the absence of a closed-form solution, much of the past efforts have focused on locating its critical manifold, trajectory in the parameter ${q, e^J}$ space where $J$ is the reduced interaction, along which the free energy is singular. However, except in isolated cases, antiferromagnetic (AF) models with $J<0$ have been largely neglected. In this paper we consider the Potts model with AF interactions focusing on deducing its critical manifold in exact and/or closed-form expressions. We first re-examine the known critical frontiers in light of AF interactions. For the square lattice we confirm the Potts self-dual point to be the sole critical point for $J>0$. We also locate its critical frontier for $J<0$ and find it to coincide with a solvability condition observed by Baxter in 1982. For the honeycomb lattice we show that the known critical point holds for {all} $J$, and determine its critical $q_c = frac 1 2 (3+sqrt 5) = 2.61803$ beyond which there is no transition. For the triangular lattice we confirm the known critical point to hold only for $J>0$. More generally we consider the centered-triangle (CT) and Union-Jack (UJ) lattices consisting of mixed $J$ and $K$ interactions, and deduce critical manifolds under homogeneity hypotheses. For K=0 the CT lattice is the diced lattice, and we determine its critical manifold for all $J$ and find $q_c = 3.32472$. For K=0 the UJ lattice is the square lattice and from this we deduce both the $J>0$ and $J<0$ critical manifolds and find $q_c=3$ for the square lattice. Our theoretical predictions are compared with recent tensor-based numerical results and Monte Carlo simulations.

Download