Do you want to publish a course? Click here

Sensors and Actuators for the Advanced LIGO Mirror Suspensions

189   0   0.0 ( 0 )
 Added by Ludovico Carbone
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have developed, produced and characterised integrated sensors, actuators and the related read-out and drive electronics that will be used for the control of the Advanced LIGO suspensions. The overall system consists of the BOSEMs (displacement sensor with integrated electro-magnetic actuator), the satellite boxes (BOSEM readout and interface electronics) and six different types of coil-driver units. In this paper we present the design of this read-out and control system, we discuss the related performance relevant for the Advanced LIGO suspensions, and we report on the experimental activity finalised at the production of the instruments for the Advanced LIGO detectors.



rate research

Read More

Advanced LIGO and Advanced Virgo are actively monitoring the sky and collecting gravitational-wave strain data with sufficient sensitivity to detect signals routinely. In this paper we describe the data recorded by these instruments during their first and second observing runs. The main data products are the gravitational-wave strain arrays, released as time series sampled at 16384 Hz. The datasets that include this strain measurement can be freely accessed through the Gravitational Wave Open Science Center at http://gw-openscience.org, together with data-quality information essential for the analysis of LIGO and Virgo data, documentation, tutorials, and supporting software.
The field of gravitational-wave astronomy has been opened up by gravitational-wave observations made with interferometric detectors. This review surveys the current state-of-the-art in gravitational-wave detectors and data analysis methods currently used by the Laser Interferometer Gravitational-Wave Observatory in the United States and the Virgo Observatory in Italy. These analysis methods will also be used in the recently completed KAGRA Observatory in Japan. Data analysis algorithms are developed to target one of four classes of gravitational waves. Short duration, transient sources include compact binary coalescences, and burst sources originating from poorly modelled or unanticipated sources. Long duration sources include sources which emit continuous signals of consistent frequency, and many unresolved sources forming a stochastic background. A description of potential sources and the search for gravitational waves from each of these classes are detailed.
In Advanced LIGO, detection and astrophysical source parameter estimation of the binary black hole merger GW150914 requires a calibrated estimate of the gravitational-wave strain sensed by the detectors. Producing an estimate from each detectors differential arm length control loop readout signals requires applying time domain filters, which are designed from a frequency domain model of the detectors gravitational-wave response. The gravitational-wave response model is determined by the detectors opto-mechanical response and the properties of its feedback control system. The measurements used to validate the model and characterize its uncertainty are derived primarily from a dedicated photon radiation pressure actuator, with cross-checks provided by optical and radio frequency references. We describe how the gravitational-wave readout signal is calibrated into equivalent gravitational-wave-induced strain and how the statistical uncertainties and systematic errors are assessed. Detector data collected over 38 calendar days, from September 12 to October 20, 2015, contain the event GW150914 and approximately 16 of coincident data used to estimate the event false alarm probability. The calibration uncertainty is less than 10% in magnitude and 10 degrees in phase across the relevant frequency band 20 Hz to 1 kHz.
The Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors have completed their initial upgrade phase and will enter the first observing run in late 2015, with detector sensitivity expected to improve in future runs. Through the combined efforts of on-site commissioners and the Detector Characterization group of the LIGO Scientific Collaboration, interferometer performance, in terms of data quality, at both LIGO observatories has vastly improved from the start of commissioning efforts to present. Advanced LIGO has already surpassed Enhanced LIGO in sensitivity, and the rate of noise transients, which would negatively impact astrophysical searches, has improved. Here we give details of some of the work which has taken place to better the quality of the LIGO data ahead of the first observing run.
Assuming that, for a given source of gravitational waves (GWs), we know its sky position, as is the case of GW events with an electromagnetic counterpart such as GW170817, we discuss a null stream method to probe GW polarizations including spin-0 (scalar) GW modes and spin-1 (vector) modes, especially with an expected network of Advanced LIGO, Advanced Virgo and KAGRA. For two independent null streams for four non-co-aligned GW detectors, we study a location on the sky, exactly at which the spin-0 modes of GWs vanish in any null stream for the GW detector network, though the strain output at a detector may contain the spin-0 modes. Our numerical calculations show that there exist seventy sky positions that satisfy this condition of killing the spin-0 modes in the null streams. If a GW source with an electromagnetic counterpart is found in one of the seventy sky positions, the spin-1 modes will be testable separately from the spin-0 modes by the null stream method. In addition, we study a superposition of the two null streams to show that any one of the three modes (one combined spin-0 and two spin-1 modes) can be eliminated by suitably adjusting a weighted superposition of the null streams and thereby a set of the remaining polarization modes can be experimentally tested.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا