Do you want to publish a course? Click here

R-Parity Violating Supersymmetry Explanation for Large t tbar Forward-Backward Asymmetry

122   0   0.0 ( 0 )
 Added by Ben Allanach PhD
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

We propose a supersymmetric explanation for the anomalously high forward backward asymmetry in top pair production measured by CDF and D0. We suppose that it is due to the t-channel exchange of a right-handed sbottom which couples to d_R and t_R, as is present in the R-parity violating minimal supersymmetric standard model. We show that all Tevatron and LHC experiments t tbar constraints may be respected for a sbottom mass between 300 and 1200 GeV, and a large Yukawa coupling >2.2, yielding A_{FB} up to 0.18. The non Standard Model contribution to the LHC charge asymmetry parameter is Delta A_C^y=0.017-0.045, small enough to be consistent with current measurements but non-zero and positive, allowing for LHC confirmation in the future within 20 fb^-1. A small additional contribution to the LHC t tbar production cross-section is also predicted, allowing a further test. We estimate that 10 fb^-1 of LHC luminosity would be sufficient to rule out the proposal to 95% confidence level, if the measurements of the t tbar cross-section turn out to be centred on the Standard Model prediction.



rate research

Read More

Models of top condensation can provide both a compelling solution to the hierarchy problem as well as an explanation of why the top-quark mass is large. The spectrum of such models, in particular topcolor-assisted technicolor, includes top-pions, top-rhos and the top-Higgs, all of which can easily have large top-charm or top-up couplings. Large top-up couplings in particular would lead to a top forward-backward asymmetry through $t$-channel exchange, easily consistent with the Tevatron measurements. Intriguingly, there is destructive interference between the top-mesons and the standard model which conspire to make the overall top pair production rate consistent with the standard model. The rate for same-sign top production is also small due to destructive interference between the neutral top-pion and the top-Higgs. Flavor physics is under control because new physics is mostly confined to the top quark. In this way, top condensation can explain the asymmetry and be consistent with all experimental bounds. There are many additional signatures of topcolor with large tu mixing, such as top(s)+jet(s) events, in which a top and a jet reconstruct a resonance mass, which make these models easily testable at the LHC.
We report on a study of the measurement techniques used to determine the leptonic forward-backward asymmetry of top anti-top quark pairs in Tevatron experiments with a proton anti-proton initial state. Recently it was shown that a fit of the differential asymmetry as a function of $q_{l}eta_{l}$ (where $q_{l}$ is the charge of the lepton from the cascade decay of the top quarks and $eta_{l}$ is the final pseudorapidity of the lepton in the detector frame) to a hyperbolic tangent function can be used to extrapolate to the full leptonic asymmetry. We find this empirical method to well reproduce the results from current experiments, and present arguments as to why this is the case. We also introduce two more models, based on Gaussian functions, that better model the $q_{l}eta_{l}$ distribution. With our better understanding, we find that the asymmetry is mainly determined by the shift of the mean of the $q_{l}eta_{l}$ distribution, the main contribution to the inclusive asymmetry comes from the region around $|q_{l}eta_{l}| = 1$, and the extrapolation from the detector-covered region to the inclusive asymmetry is stable via a multiplicative scale factor, giving us confidence in the previously reported experimental results.
226 - Vasiliki A. Mitsou 2015
$R$-parity violating supersymmetric models (RPV SUSY) are becoming increasingly more appealing than its $R$-parity conserving counterpart in view of the hitherto non-observation of SUSY signals at the LHC. In this paper, we discuss RPV scenarios where neutrino masses are naturally generated, namely RPV through bilinear terms (bRPV) and the $mu$-from-$ u$ supersymmetric standard model ($mu u$SSM). The latter is characterised by a rich Higgs sector that easily accommodates a 125-GeV Higgs boson. The phenomenology of such models at the LHC is reviewed, giving emphasis on final states with displaced objects, and relevant results obtained by LHC experiments are presented. The implications for dark matter for these theoretical proposals is also addressed.
We use techniques from soft-collinear effective theory (SCET) to derive renormalization-group improved predictions for single-particle inclusive (1PI) observables in top-quark pair production at hadron colliders. In particular, we study the top-quark transverse-momentum and rapidity distributions, the forward-backward asymmetry at the Tevatron, and the total cross section at NLO+NNLL order in resummed perturbation theory and at approximate NNLO in fixed order. We also perform a detailed analysis of power corrections to the leading terms in the threshold expansion of the partonic hard-scattering kernels. We conclude that, although the threshold expansion in 1PI kinematics is susceptible to numerically significant power corrections, its predictions for the total cross section are in good agreement with those obtained by integrating the top-pair invariant-mass distribution in pair invariant-mass kinematics, as long as a certain set of subleading terms appearing naturally within the SCET formalism is included.
A recent CMS search for the right handed gauge boson $W_R$ reports an interesting deviation from the Standard Model. The search has been conducted in the $eejj$ channel and has shown a 2.8$sigma$ excess around $m_{eejj} sim 2$ TeV. In this work, we explain the reported CMS excess with R-parity violating supersymmetry (SUSY). We consider resonant selectron and sneutrino production, followed by the three body decays of the neutralino and chargino via an $mathcal{R}-$parity violating coupling. We fit the excess for slepton masses around 2 TeV. The scenario can further be tested in neutrinoless double beta decay ($0 u beta beta$) experiments. GERDA Phase-II will probe a significant portion of the good-fit parameter space.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا