Simulations of protostellar collapse using multigroup radiation hydrodynamics. I. The first collapse


Abstract in English

Radiative transfer plays a major role in the process of star formation. Many simulations of gravitational collapse of a cold gas cloud followed by the formation of a protostellar core use a grey treatment of radiative transfer coupled to the hydrodynamics. However, dust opacities which dominate extinction show large variations as a function of frequency. In this paper, we used frequency-dependent radiative transfer to investigate the influence of the opacity variations on the properties of Larsons first core. We used a multigroup M1 moment model in a 1D radiation hydrodynamics code to simulate the spherically symmetric collapse of a 1 solar mass cloud core. Monochromatic dust opacities for five different temperature ranges were used to compute Planck and Rosseland means inside each frequency group. The results are very consistent with previous studies and only small differences were observed between the grey and multigroup simulations. For a same central density, the multigroup simulations tend to produce first cores with a slightly higher radius and central temperature. We also performed simulations of the collapse of a 10 and 0.1 solar mass cloud, which showed the properties of the first core to be independent of the initial cloud mass, with again no major differences between grey and multigroup models. For Larsons first collapse, where temperatures remain below 2000 K, the vast majority of the radiation energy lies in the IR regime and the system is optically thick. In this regime, the grey approximation does a good job reproducing the correct opacities, as long as there are no large opacity variations on scales much smaller than the width of the Planck function. The multigroup method is however expected to yield more important differences in the later stages of the collapse when high energy (UV and X-ray) radiation is present and matter and radiation are strongly decoupled.

Download