Do you want to publish a course? Click here

Optically induced coherent transport far above Tc in underdoped YBa2Cu3O6+x

64   0   0.0 ( 0 )
 Added by Daniele Nicoletti
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on a photo-induced transient state of YBa2Cu2O6+x in which transport perpendicular to the Cu-O planes becomes highly coherent. This effect is achieved by excitation with mid-infrared optical pulses, tuned to the resonant frequency of apical oxygen vibrations, which modulate both lattice and electronic properties. Below the superconducting transition temperature Tc, the equilibrium signatures of superconducting interlayer coupling are enhanced. Most strikingly, the optical excitation induces a new reflectivity edge at higher frequency than the equilibrium Josephson plasma resonance, with a concomitant enhancement of the low frequency imaginary conductivity. Above Tc, the incoherent equilibrium conductivity becomes highly coherent, with the appearance of a reflectivity edge and a positive imaginary conductivity that increases with decreasing frequency. These features are observed up to room temperature in YBa2Cu2O6.45 and YBa2Cu2O6.5. The data above Tc can be fitted by hypothesizing that the light re-establishes a transient superconducting state over only a fraction of the solid, with a lifetime of a few picoseconds. Non-superconducting transport could also explain these observations, although one would have to assume transient carrier mobilities near 10^4 cm^2/(V.sec) at 100 K, with a density of charge carriers similar to the below Tc superfluid density. Our results are indicative of highly unconventional non-equilibrium physics and open new prospects for optical control of complex solids.



rate research

Read More

The control of non-equilibrium phenomena in complex solids is an important research frontier, encompassing new effects like light induced superconductivity. Here, we show that coherent optical excitation of molecular vibrations in the organic conductor K3C60 can induce a non-equilibrium state with the optical properties of a superconductor. A transient gap in the real part of the optical conductivity and a low-frequency divergence of the imaginary part are measured for base temperatures far above equilibrium Tc=20 K. These findings underscore the role of coherent light fields in inducing emergent order.
The mystery of the normal state in the underdoped cuprates has deepened with the use of newer and complementary experimental probes. While photoemission studies have revealed solely `Fermi arcs centered on nodal points in the Brillouin zone at which holes aggregate upon doping, more recent quantum oscillation experiments have been interpreted in terms of an ambipolar Fermi surface, that includes sections containing electron carriers located at the antinodal region. To address the question of whether an ambipolar Fermi surface truly exists, here we utilize measurements of the second harmonic quantum oscillations, which reveal that the amplitude of these oscillations arises mainly from oscillations in the chemical potential, providing crucial information on the nature of the Fermi surface in underdoped YBa2Cu3O6+x. In particular, the detailed relationship between the second harmonic amplitude and the fundamental amplitude of the quantum oscillations leads us to the conclusion that there exists only a single underlying quasi-two dimensional Fermi surface pocket giving rise to the multiple frequency components observed via the effects of warping, bilayer splitting and magnetic breakdown. A range of studies suggest that the pocket is most likely associated with states near the nodal region of the Brillouin zone of underdoped YBa2Cu3O6+x at high magnetic fields.
228 - D. Fournier , G. Levy , Y. Pennec 2010
Arguably the most intriguing aspect of the physics of cuprates is the close proximity between the record high-Tc superconductivity (HTSC) and the antiferromagnetic charge-transfer insulating state driven by Mott-like electron correlations. These are responsible for the intimate connection between high and low-energy scale physics, and their key role in the mechanism of HTSC was conjectured very early on. More recently, the detection of quantum oscillations in high-magnetic field experiments on YBa2Cu3O6+x (YBCO) has suggested the existence of a Fermi surface of well-defined quasiparticles in underdoped cuprates, lending support to the alternative proposal that HTSC might emerge from a Fermi liquid across the whole cuprate phase diagram. Discriminating between these orthogonal scenarios hinges on the quantitative determination of the elusive quasiparticle weight Z, over a wide range of hole-doping p. By means of angle-resolved photoemission spectroscopy (ARPES) on in situ doped YBCO, and following the evolution of bilayer band-splitting, we show that the overdoped metal electronic structure (0.25<p<0.37) is in remarkable agreement with density functional theory and the Z=2p/(p+1) mean-field prediction. Below p~0.10-0.15, we observe the vanishing of the nodal quasiparticle weight Z_N; this marks a clear departure from Fermi liquid behaviour and -- consistent with dynamical mean-field theory -- is even a more rapid crossover to the Mott physics than expected for the doped resonating valence bond (RVB) spin liquid.
We report a detailed Raman scattering study of the lattice dynamics in detwinned single crystals of the underdoped high temperature superconductor YBa2Cu3O6+x (x=0.75, 0.6, 0.55 and 0.45). Whereas at room temperature the phonon spectra of these compounds are similar to that of optimally doped YBa2Cu3O6.99, additional Raman-active modes appear upon cooling below ~170-200 K in underdoped crystals. The temperature dependence of these new features indicates that they are associated with the incommensurate charge density wave state recently discovered using synchrotron x-ray scattering techniques on the same single crystals. Raman scattering has thus the potential to explore the evolution of this state under extreme conditions.
The electrical resistivity rho_c of the underdoped cuprate superconductor YBCO was measured perpendicular to the CuO_2 planes on ultra-high quality single crystals in magnetic fields large enough to suppress superconductivity. The incoherent insulating-like behavior of rho_c at high temperature, characteristic of all underdoped cuprates, is found to cross over to a coherent regime of metallic behavior at low temperature. This crossover coincides with the emergence of the small electron pocket detected in the Fermi surface of YBCO via quantum oscillations, the Hall and Seebeck coefficients and with the detection of a unidirectional modulation of the charge density as seen by high-field NMR measurements. The low coherence temperature is quantitatively consistent with the small hopping integral t_perp inferred from the splitting of the quantum oscillation frequencies. We conclude that the Fermi-surface reconstruction in YBCO at dopings from p = 0.08 to at least p = 0.15, attributed to stripe order, produces a metallic state with 3D coherence deep in the underdoped regime.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا