Optical probing of shocks driven into overdense plasmas by laser hole-boring


Abstract in English

Observations of the interaction of an intense {lambda}0 approx 10 {mu}m laser pulse with near-critical overdense plasmas (ne = 1.8 - 3 nc) are presented. For the first time, transverse optical probing is used to show a recession of the front surface caused by radiation pressure driven hole-boring by the laser pulse with an initial velocity > 10^6 ms-1, and the resulting collisionless shocks. The collisionless shock propagates through the plasma, dissipates into an ion-acoustic solitary wave, and eventually becomes collisional as it slows further. These conclusions are supported by PIC simulations which show that the initial evolution is dominated by collisionless mechanisms.

Download