Do you want to publish a course? Click here

Optical probing of shocks driven into overdense plasmas by laser hole-boring

314   0   0.0 ( 0 )
 Added by Nicholas Dover
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Observations of the interaction of an intense {lambda}0 approx 10 {mu}m laser pulse with near-critical overdense plasmas (ne = 1.8 - 3 nc) are presented. For the first time, transverse optical probing is used to show a recession of the front surface caused by radiation pressure driven hole-boring by the laser pulse with an initial velocity > 10^6 ms-1, and the resulting collisionless shocks. The collisionless shock propagates through the plasma, dissipates into an ion-acoustic solitary wave, and eventually becomes collisional as it slows further. These conclusions are supported by PIC simulations which show that the initial evolution is dominated by collisionless mechanisms.



rate research

Read More

In the interaction of laser pulses of extreme intensity ($>10^{23}~{rm W cm}^{-2}$) with high-density, thick plasma targets, simulations show significant radiation friction losses, in contrast to thin targets for which such losses are negligible. We present an analytical calculation, based on classical radiation friction modeling, of the conversion efficiency of the laser energy into incoherent radiation in the case when a circularly polarized pulse interacts with a thick plasma slab of overcritical initial density. By accounting for three effects including the influence of radiation losses on the single electron trajectory, the global `hole boring motion of the laser-plasma interaction region under the action of radiation pressure, and the inhomogeneity of the laser field in both longitudinal and transverse direction, we find a good agreement with the results of three-dimensional particle-in-cell simulations. Overall, the collective effects greatly reduce radiation losses with respect to electrons driven by the same laser pulse in vacuum, which also shift the reliability of classical calculations up to higher intensities.
The interaction of high-intensity laser pulses and solid targets provides a promising way to create compact, tunable and bright XUV attosecond sources that can become a unique tool for a variety of applications. However, it is important to control the polarization state of this XUV radiation, and to do so in the most efficient regime of generation. Using the relativistic electronic spring (RES) model and particle-in-cell (PIC) simulations, we show that the polarization state of the generated attosecond pulses can be tuned in a wide range of parameters by adjusting the polarization and angle of incidence of the laser radiation. In particular, we demonstrate the possibility of producing circularly polarized attosecond pulses in a wide variety of setups.
Filamentation due to the growth of a Weibel-type instability was observed in the interaction of a pair of counter-streaming, ablatively-driven plasma flows, in a supersonic, collisionless regime relevant to astrophysical collisionless shocks. The flows were created by irradiating a pair of opposing plastic (CH) foils with 1.8 kJ, 2-ns laser pulses on the OMEGA EP laser system. Ultrafast laser-driven proton radiography was used to image the Weibel-generated electromagnetic fields. The experimental observations are in good agreement with the analytical theory of the Weibel instability and with particle-in-cell simulations.
The interaction of dense plasmas with an intense laser under a strong external magnetic field has been investigated. When the cyclotron frequency for the ambient magnetic field is higher than the laser frequency, the lasers electromagnetic field is converted to the whistler mode that propagates along the field line. Because of the nature of the whistler wave, the laser light penetrates into dense plasmas with no cutoff density, and produces superthermal electrons through cyclotron resonance. It is found that the cyclotron resonance absorption occurs effectively under the broadened conditions, or a wider range of the external field, which is caused by the presence of relativistic electrons accelerated by the laser field. The upper limit of the ambient field for the resonance increases in proportion to the square root of the relativistic laser intensity. The propagation of a large-amplitude whistler wave could raise the possibility for plasma heating and particle acceleration deep inside dense plasmas.
Magnetic reconnection is a fundamental plasma process that is thought to play a key role in the production of nonthermal particles associated with explosive phenomena in space physics and astrophysics. Experiments at high-energy-density facilities are starting to probe the microphysics of reconnection at high Lundquist numbers and large system sizes. We have performed particle-in-cell (PIC) simulations to explore particle acceleration for parameters relevant to laser-driven reconnection experiments. We study particle acceleration in large system sizes that may be produced soon with the most energetic laser drivers available, such as at the National Ignition Facility. In these conditions, we show the possibility of reaching the multi-plasmoid regime, where plasmoid acceleration becomes dominant. Our results show the transition from textit{X} point to plasmoid-dominated acceleration associated with the merging and contraction of plasmoids that further extend the maximum energy of the power-law tail of the particle distribution for electrons. We also find for the first time a system-size-dependent emergence of nonthermal ion acceleration in driven reconnection, where the magnetization of ions at sufficiently large sizes allows them to be contained by the magnetic field and energized by direct textit{X} point acceleration. For feasible experimental conditions, electrons and ions can attain energies of $epsilon_{max,e} / k_{B} T_{e} > 100$ and $epsilon_{max,i} / k_{B} T_{i} > 1000$. Using PIC simulations with binary Monte Carlo Coulomb collisions we study the impact of collisionality on plasmoid formation and particle acceleration. The implications of these results for understanding the role reconnection plays in accelerating particles in space physics and astrophysics are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا