Do you want to publish a course? Click here

Impact of the 2 Fe unit cell on the electronic structure measured by ARPES in iron pnictides

260   0   0.0 ( 0 )
 Added by Brouet Veronique
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

In all iron pnictides, the positions of the ligand alternatively above and below the Fe plane create 2 inequivalent Fe sites. This results in 10 Fe 3d bands in the electronic structure. However, they do not all have the same status for an ARPES experiment. There are interference effects between the 2 Fe that modulate strongly the intensity of the bands and that can even switch their parity. We give a simple description of these effects, notably showing that ARPES polarization selection rules in these systems cannot be applied by reference to a single Fe ion. We show that ARPES data for the electron pockets in Ba(Fe0.92Co0.08)2As2 are in excellent agreement with this model. We observe both the total suppression of some bands and the parity switching of some other bands. Once these effects are properly taken into account, the structure of the electron pockets, as measured by ARPES, becomes very clear and simple. By combining ARPES measurements in different experimental configurations, we clearly isolate each band forming one of the electron pockets. We identify a deep electron band along one ellipse axis with the dxy orbital and a shallow electron band along the perpendicular axis with the dxz/dyz orbitals, in good agreement with band structure calculations. We show that the electron pockets are warped as a function of kz as expected theoretically, but that they are much smaller than predicted by the calculation.



rate research

Read More

In correlated metals derived from Mott insulators, the motion of an electron is impeded by Coulomb repulsion due to other electrons. This phenomenon causes a substantial reduction in the electrons kinetic energy leading to remarkable experimental manifestations in optical spectroscopy. The high-Tc superconducting cuprates are perhaps the most studied examples of such correlated metals. The occurrence of high-Tc superconductivity in the iron pnictides puts a spotlight on the relevance of correlation effects in these materials. Here we present an infrared and optical study on single crystals of the iron pnictide superconductor LaFePO. We find clear evidence of electronic correlations in metallic LaFePO with the kinetic energy of the electrons reduced to half of that predicted by band theory of nearly free electrons. Hallmarks of strong electronic many-body effects reported here are important because the iron pnictides expose a new pathway towards a correlated electron state that does not explicitly involve the Mott transition.
We study with ARPES the renormalization and quasiparticle lifetimes of the $d_{xy}$ and $d_{xz}$/$d_{yz}$ orbitals in two iron pnictides, LiFeAs and Ba(Fe$_{0.92}$Co$_{0.08}$)$_2$As$_2$ (Co8). We find that both quantities depend on orbital character rather than on the position on the Fermi Surface (for example hole or electron pocket). In LiFeAs, the renormalizations are larger for $d_{xy}$, while they are similar on both types of orbitals in Co8. The most salient feature, which proved robust against all the ARPES caveats we could think of, is that the lifetimes for $d_{xy}$ exhibit a markedly different behavior than those for $d_{xz}$/$d_{yz}$. They have smaller values near $E_F$ and exhibit larger $omega$ and temperature dependences. While the behavior of $d_{xy}$ is compatible with a Fermi liquid description, it is not the case for $d_{xz}$/$d_{yz}$. This situation should have important consequences for the physics of iron pnictides, which have not been considered up to now. More generally, it raises interesting questions on how a Fermi liquid regime can be established in a multiband system with small effective bandwidths.
120 - G. Lang , H.-J. Grafe , D. Paar 2009
The charge distribution in RFeAsO$_{1-x}$F$_x$ (R=La, Sm) iron pnictides is probed using As nuclear quadrupole resonance. Whereas undoped and optimally-doped or overdoped compounds feature a single charge environment, two charge environments are detected in the underdoped region. Spin-lattice relaxation measurements show their coexistence at the nanoscale. Together with the quantitative variations of the spectra with doping, they point to a local electronic order in the iron layers, where low- and high-doping-like regions would coexist. Implications for the interplay of static magnetism and superconductivity are discussed.
218 - Jan M. Tomczak 2014
While in strongly correlated materials one often focuses on local electronic correlations, the influence of non-local exchange and correlation effects beyond band-theory can be pertinent in systems with more extended orbitals. Thus in many compounds an adequate theoretical description requires the joint treatment of local and non-local self-energies. Here, I will argue that this is the case for the iron pnictide and chalcogenide superconductors. As an approach to tackle their electronic structure, I will detail the implementation of the recently proposed scheme that combines the quasi-particle self-consistent GW approach with dynamical mean-field theory: QSGW+DMFT. I will showcase the possibilities of QSGW+DMFT with an application on BaFe2As2. Further, I will discuss the empirical finding that in pnictides dynamical and non-local correlation effects separate within the quasi-particle band-width.
The application of pressure as well as the successive substitution of Ru with Fe in the hidden order (HO) compound URu$_2$Si$_2$ leads to the formation of the large moment antiferromagnetic phase (LMAFM). Here we have investigated the substitution series URu$_{2-x}$Fe$_x$Si$_2$ with $x$ = 0.2 and 0.3 with non-resonant inelastic x-ray scattering (NIXS) and 4$f$ core-level photoelectron spectroscopy with hard x-rays (HAXPES). NIXS shows that the substitution of Fe has no impact on the symmetry of the ground-state wave function. In HAXPES we find no shift of spectral weight that would be indicative for a change of the 5$f$-electron count. Consequently, changes in the exchange interaction $cal{J}$ due to substitution must be minor so that the conjecture of chemical pressure seems unlikely. An alternative scenario is discussed, namely the formation of long range magnetic order due the substitution induced local enhancement of the magnetization in the vicinity of the $f$-electron ions while the overall electronic structure remains unchanged.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا