Do you want to publish a course? Click here

Weyl-Weyl Correlator in de Donder Gauge on de Sitter

205   0   0.0 ( 0 )
 Added by Richard Woodard
 Publication date 2012
  fields Physics
and research's language is English
 Authors P. J. Mora




Ask ChatGPT about the research

We compute the linearized Weyl-Weyl correlator using a new solution for the graviton propagator on de Sitter background in de Donder gauge. The result agrees exactly with a previous computation in a noncovariant gauge. We also use dimensional regularization to compute the one loop expectation value of the square of the Weyl tensor.



rate research

Read More

By making use of the background field method, the one-loop quantization for Euclidean Einstein-Weyl quadratic gravity model on the de Sitter universe is investigated. Using generalized zeta function regularization, the on-shell and off-shell one-loop effective actions are explicitly obtained and one-loop renormalizability, as well as the corresponding one-loop renormalization group equations, are discussed. The so called critical gravity is also considered.
173 - Katie E. Leonard 2012
Previous studies of the vacuum polarization on de Sitter have demonstrated that there is a simple, noncovariant representation of it in which the physics is transparent. There is also a cumbersome, covariant representation in which the physics is obscure. Despite being unwieldy, the latter form has a powerful appeal for those who are concerned about de Sitter invariance. We show that nothing is lost by employing the simple, noncovariant representation because there is a closed form procedure for converting its structure functions to those of the covariant representation. We also present a vastly improved technique for reading off the noncovariant structure functions from the primitive diagrams. And we discuss the issue of representing the vacuum polarization for a general metric background.
The properties of Lorentz transformations in de Sitter relativity are studied. It is shown that, in addition to leaving invariant the velocity of light, they also leave invariant the length-scale related to the curvature of the de Sitter spacetime. The basic conclusion is that it is possible to have an invariant length parameter without breaking the Lorentz symmetry. This result may have important implications for the study of quantum kinematics, and in particular for quantum gravity.
The Gupta-Bleuler triplet for vector-spinor gauge field is presented in de Sitter ambient space formalism. The invariant space of field equation solutions is obtained with respect to an indecomposable representation of the de Sitter group. By using the general solution of the massless spin-$frac{3}{2}$ field equation, the vector-spinor quantum field operator and its corresponding Fock space is constructed. The quantum field operator can be written in terms of the vector-spinor polarization states and a quantum conformally coupled massless scalar field, which is constructed on Bunch-Davies vacuum state. The two-point function is also presented, which is de Sitter covariant and analytic.
In this work we study the Sorkin-Johnston (SJ) vacuum in de Sitter spacetime for free scalar field theory. For the massless theory we find that the SJ vacuum can neither be obtained from the $O(4)$ Fock vacuum of Allen and Folacci nor from the non-Fock de Sitter invariant vacuum of Kirsten and Garriga. Using a causal set discretisation of a slab of 2d and 4d de Sitter spacetime, we find the causal set SJ vacuum for a range of masses $m geq 0$ of the free scalar field. While our simulations are limited to a finite volume slab of global de Sitter spacetime, they show good convergence as the volume is increased. We find that the 4d causal set SJ vacuum shows a significant departure from the continuum Motolla-Allen $alpha$-vacua. Moreover, the causal set SJ vacuum is well-defined for both the minimally coupled massless $m=0$ and the conformally coupled massless $m=m_c$ cases. This is at odds with earlier work on the continuum de Sitter SJ vacuum where it was argued that the continuum SJ vacuum is ill-defined for these masses. Our results hint at an important tension between the discrete and continuum behaviour of the SJ vacuum in de Sitter and suggest that the former cannot in general be identified with the Mottola-Allen $alpha$-vacua even for $m>0$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا