Do you want to publish a course? Click here

Proposal for an Electron Antineutrino Disappearance Search Using High-Rate 8Li Production and Decay

151   0   0.0 ( 0 )
 Added by Joshua Spitz
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

This paper introduces a novel, high-intensity source of electron antineutrinos from the production and subsequent decay of 8Li. When paired with an existing ~1 kton scintillator-based detector, this <E_ u>=6.4 MeV source opens a wide range of possible searches for beyond standard model physics via studies of the inverse beta decay interaction. In particular, the experimental design described here has unprecedented sensitivity to electron antineutrino disappearance at $Delta m^2sim$ 1 eV$^2$ and features the ability to distinguish between the existence of zero, one, and two sterile neutrinos.



rate research

Read More

182 - David M. Webber 2012
The theory of neutrino oscillations explains changes in neutrino flavor, count rates, and spectra from solar, atmospheric, accelerator, and reactor neutrinos. These oscillations are characterized by three mixing angles and two mass-squared differences. The solar mixing angle, {theta}_12, and the atmospheric mixing angle, {theta}_23, have been well measured, but until recently the neutrino mixing angle {theta}_13 was not well known. The Daya Bay experiment, located northeast of Hong Kong at the Guangdong Nuclear Power Complex in China, has made a precise measurement of electron antineutrino disappearance using six functionally-identical gadolinium-doped liquid scintillator-based detectors at three sites with distances between 364 and 1900 meters from six reactor cores. This proceeding describes the Daya Bay updated result, using 127 days of good run time collected between December 24, 2011 and May 11, 2012. For the far site, the ratio of the observed number of events to the expected number of events assuming no neutrino oscillation is 0.944 +/- 0.007(stat) +/- 0.003(syst). A fit for {theta}_13 in the three-neutrino framework yields sin^2 2{theta}_13 = 0.089 +/- 0.010(stat) +/- 0.005(syst).
In the last two decades the search for neutrinoless double beta decay has evolved into one of the highest priorities for understanding neutrinos and the origin of mass. The main reason for this paradigm shift has been the discovery of neutrino oscillations, which clearly established the existence of massive neutrinos. An additional motivation for conducting such searches comes from the existence of an unconfirmed, but not refuted, claim of evidence for neutrinoless double decay in $^{76}text{Ge}$. As a consequence, a new generation of experiments, employing different detection techniques and $betabeta$ isotopes, is being actively promoted by experimental groups across the world. In addition, nuclear theorists are making remarkable progress in the calculation of the neutrinoless double beta decay nuclear matrix elements, thus eliminating a substantial part of the theoretical uncertainties affecting the particle physics interpretation of this process. In this report, we review the main aspects of the double beta decay process and some of the most relevant experiments. The picture that emerges is one where searching for neutrinoless double beta decay is recognized to have both far-reaching theoretical implications and promising prospects for experimental observation in the near future.
The Daya Bay Reactor Neutrino Experiment has measured a non-zero value for the neutrino mixing angle $theta_{13}$ with a significance of 5.2 standard deviations. Antineutrinos from six 2.9 GW$_{rm th}$ reactors were detected in six antineutrino detectors deployed in two near (flux-weighted baseline 470 m and 576 m) and one far (1648 m) underground experimental halls. With a 43,000 ton-GW_{rm th}-day livetime exposure in 55 days, 10416 (80376) electron antineutrino candidates were detected at the far hall (near halls). The ratio of the observed to expected number of antineutrinos at the far hall is $R=0.940pm 0.011({rm stat}) pm 0.004({rm syst})$. A rate-only analysis finds $sin^22theta_{13}=0.092pm 0.016({rm stat})pm0.005({rm syst})$ in a three-neutrino framework.
99 - C. Giunti , M. Laveder , Y.F. Li 2012
We present a complete update of the analysis of electron neutrino and antineutrino disappearance experiments in terms of neutrino oscillations in the framework of 3+1 neutrino mixing, taking into account the Gallium anomaly, the reactor anomaly, solar neutrino data and nu_e-C scattering data. We discuss the implications of a recent 71Ga(3He,3H)71Ge measurement which give information on the neutrino cross section in Gallium experiments. We discuss the solar bound on active-sterile mixing and present our numerical results. We discuss the connection between the results of the fit of neutrino oscillation data and the heavy neutrino mass effects in beta-decay experiments (considering new Mainz data) and neutrinoless double-beta decay experiments (considering the recent EXO results).
We report an improved measurement of the neutrino mixing angle $theta_{13}$ from the Daya Bay Reactor Neutrino Experiment. We exclude a zero value for $sin^22theta_{13}$ with a significance of 7.7 standard deviations. Electron antineutrinos from six reactors of 2.9 GW$_{rm th}$ were detected in six antineutrino detectors deployed in two near (flux-weighted baselines of 470 m and 576 m) and one far (1648 m) underground experimental halls. Using 139 days of data, 28909 (205308) electron antineutrino candidates were detected at the far hall (near halls). The ratio of the observed to the expected number of antineutrinos assuming no oscillations at the far hall is $0.944pm 0.007({rm stat.}) pm 0.003({rm syst.})$. An analysis of the relative rates in six detectors finds $sin^22theta_{13}=0.089pm 0.010({rm stat.})pm0.005({rm syst.})$ in a three-neutrino framework.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا