No Arabic abstract
The magneto-optical imaging technique is used to visualize the penetration of the magnetic induction in YBa$_{2}$Cu$_{3}$O$_{7-delta}$ thin films during surface resistance measurements. The in-situ surface resistance measurements were performed at 7 GHz using the dielectric resonator method. When only the microwave magnetic field $H_{rf}$ is applied to the superconductor, no $H_{rf}$-induced vortex penetration is observed, even at high rf power. In contrast, in the presence of a constant magnetic field superimposed on $H_{rf}$ we observe a progression of the flux front as $H_{rf}$ is increased. A local thermometry method based on the measurement of the resonant frequency of the dielectric resonator placed on the YBa$_{2}$Cu$_{3}$O$_{7-delta}$ thin film shows that the $H_{rf}$--induced flux penetration is due to the increase of the film temperature.
Most measurements of critical current densities in YBa$_2$Cu$_3$O$_{7-delta}$ thin films to date have been performed on films where the textit{c}-axis is grown normal to the film surface. With such films, the analysis of the dependence of $j_c$ on the magnetic field angle is complex. The effects of extrinsic contributions to the angular field dependence of $j_c$, such as the measurement geometry and disposition of pinning centres, are convoluted with those intrinsically due to the anisotropy of the material. As a consequence of this, it is difficult to distinguish between proposed FLL structure models on the basis of angular critical current density measurements on textit{c}-axis films. Films grown on mis-cut (vicinal) substrates have a reduced measurement symmetry and thus provide a greater insight into the critical current anisotropy. In this paper previous descriptions of the magnetic field angle dependence of $j_c$ in YBa$_2$Cu$_3$O$_{7-delta}$ are reviewed. Measurements on YBa$_2$Cu$_3$O$_{7-delta}$ thin films grown on a range of vicinal substrates are presented and the results interpreted in terms of the structure and dimensionality of the FLL in YBa$_2$Cu$_3$O$_{7-delta}$. There is strong evidence for a transition in the structure of the flux line lattice depending on magnetic field magnitude, orientation and temperature. As a consequence, a simple scaling law can not, by itself, describe the observed critical current anisotropy in YBa$_2$Cu$_3$O$_{7-delta}$. The experimentally obtained $j_c(theta)$ behaviour of YBCO is successfully described in terms of a kinked vortex structure for fields applied near parallel to the textit{a-b} planes.
Doping is one of the most relevant paths to tune the functionality of cuprates, it determines carrier density and the overall physical properties of these impressive superconducting materials. We present an oxygen doping study of YBa$_2$Cu$_3$O$_{7-delta}$ (YBCO) thin films from underdoped to overdoped state, correlating the measured charge carrier density, $n_textrm{H}$, the hole doping, $p$, and the critical current density, $J_textrm{c}$. Our results show a continuous increase of $J_textrm{c}$ with charge carrier density, reaching 90 MA/cm$^2$ at 5 K for $p$-doping at the Quantum Critical Point (QCP), linked to an increase of the superconducting condensation energy. The ultra-high $J_textrm{c}$ achived corresponds to a third of the depairing current, i.e. a value 60 % higher than ever reported in YBCO films. The overdoped regime is characterized by a sudden increase of $n_textrm{H}$, associated to the reconstruction of the Fermi-surface at the QCP. Overdoping YBCO opens a promising route to extend the current carrying capabilities of REBCO coated conductors for applications.
Solid state ionic approaches for modifying ion distributions in getter/oxide heterostructures offer exciting potentials to control material properties. Here we report a simple, scalable approach allowing for total control of the superconducting transition in optimally doped YBa$_{2}$Cu$_{3}$O$_{7-{delta}}$ (YBCO) films via a chemically-driven ionic migration mechanism. Using a thin Gd capping layer of up to 20 nm deposited onto 100 nm thick epitaxial YBCO films, oxygen is found to leach from deep within the YBCO. Progressive reduction of the superconducting transition is observed, with complete suppression possible for a sufficiently thick Gd layer. These effects arise from the combined impact of redox-driven electron doping and modification of the YBCO microstructure due to oxygen migration and depletion. This work demonstrates an effective ionic control of superconductivity in oxides, an interface induced effect that goes well into the quasi-bulk regime, opening up possibilities for electric field manipulation.
We investigate the effect of the anisotropy and of the directional pinning in YBa$_2$Cu$_3$O$_{7-x}$ films grown by pulsed laser ablation from targets containing BaZrO$_3$ at 5% mol. BaZrO$_3$ inclusions self-assemble to give nanorods oriented along the c-axis, thus giving a preferential direction for vortex pinning. The directionality of vortex response is studied at high ac frequency with the complex microwave response at 48 GHz, as a function of the applied field and of the angle $theta$ between the field and the c-axis. The complex microwave response does not exhibit any angular scaling, suggesting that the structural anisotropy of YBa$_2$Cu$_3$O$_{7-x}$ is supplemented by at least another preferred orientation. The pinning parameter $r$ shows evidence of directional pinning, effective in a wide range of angles around the c-axis (thus ascribed to BZO nanocolumns).
Temperature-dependent London penetration depth, $lambda(T)$, of a high quality optimally-doped $text{YBa}_{2}text{Cu}_{3}text{O}_{7-delta}$ single crystal was measured using tunnel-diode-resonator technique. Controlled artificial disorder was induced by low-temperature (20~K) irradiation by 2.5 MeV electrons at two large doses of $3.8times10^{19}$and $5.3times10^{19}$ electrons per $textrm{cm}^{2}$. The irradiation caused significant suppression of the superconductors critical temperature, $T_{c}$, from 94.6 K to 90.0 K, and to 78.7 K, respectively. The low-temperature behavior of $lambdaleft(Tright)$ evolves from a $T-$ linear in pristine state to a $T^{2}-$ behavior after irradiation, expected for a line-nodal $d-$wave superconductor. However, the original theory that explained such behavior assumed a unitary limit of the scattering potential, whereas usually in normal metals and semiconductors, Born scattering is sufficient to describe the experiment. To estimate the scattering potential strength, we calculated the superfluid density, $rho_{s}=lambda^{2}left(0right)/lambda^{2}left(Tright)$, varying the amount and strength of non-magnetic scattering using a self-consistent $t-$matrix theory. Comparing experimental and theoretical coefficients $A$ and $B$ of the low-temperature power series, $rho_{s}approx1-At-Bt^{2}$, we determine the amplitude of the scattering phase shift to be around 65$^{o}$. Knowing this value is important for further theoretical analysis of the microscopic mechanisms of superconductivity in $text{YBa}_{2}text{Cu}_{3}text{O}_{7-delta}$ high$-T_{c}$ superconductor.