Do you want to publish a course? Click here

Evidence of Inhomogeneous Superconductivity in FeTe$_{1-x}$Se$_x$ Thin Film Using Scotch-Tape Method

413   0   0.0 ( 0 )
 Added by Hiroyuki Okazaki
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have fabricated thin films of FeTe$_{1-x}$Se$_x$ using a scotch-tape method. The superconductivities of the thin films are different from each other although these films were fabricated from the same bulk sample. The result clearly presents the inhomogeneous superconductivity in FeTe$_{1-x}$Se$_x$. The difference comes from inhomogeneity due to the excess Fe concentration. The resistivity of a thin film with low excess Fe shows good superconductivity with the sharp superconducting-transition width and more isotropic superconductivity.



rate research

Read More

We found that hot alcoholic beverages were effective in inducing superconductivity in FeTe$_{0.8}$S0$_{.2}$. Heating FeTe$_{0.8}$S0$_{.2}$ compound in various alcoholic beverages enhances the superconducting properties compared to pure water-ethanol mixture as a control. Heating with red wine for 24 hours leads to the largest shielding volume fraction of 62.4% and the highest zero resistivity temperature of 7.8 K. Some components present in alcoholic beverages, other than water and ethanol, have the ability to induce superconductivity in FeTe$_{0.8}$S0$_{.2}$ compound.
The iron-based superconductor FeTe$_{1-x}$Se$_{x}$ has attracted considerable attention as a candidate topological superconductor owing to a unique combination of topological surface states and bulk high-temperature superconductivity. The superconducting properties of as-grown single crystals, however, are highly variable and synthesis dependent due to excess interstitial iron impurities incorporated during growth. Here we report a novel physicochemical process for pumping this interstitial iron out of the FeTe$_{1-x}$Se$_{x}$ matrix and achieving bulk superconductivity. Our method should have significant value for the synthesis of high-quality single crystals of FeTe$_{1-x}$Se$_{x}$ with large superconducting volume fractions.
Electronic correlation is of fundamental importance to high temperature superconductivity. Iron-based superconductors are believed to possess moderate correlation strength, which combined with their multi-orbital nature makes them a fascinating platform for the emergence of exotic phenomena. A particularly striking form is the emergence of an orbital selective Mott phase, where the localization of a subset of orbitals leads to a drastically reconstructed Fermi surface. Here, we report spectroscopic evidence of the reorganization of the Fermi surface from FeSe to FeTe as Se is substituted by Te. We uncover a particularly transparent way to visualize the localization of the $d_{xy}$ electron orbital through the suppression of its hybridization with the more coherent $d$ electron orbitals, which leads to a redistribution of the orbital-dependent spectral weight near the Fermi level. These noteworthy features of the Fermi surface are accompanied by a divergent behavior of a band renormalization in the $d_{xy}$ orbital. All of our observations are further supported by our theoretical calculations to be salient spectroscopic signatures of such a non-thermal evolution from a strongly correlated metallic phase towards an orbital-selective Mott phase in FeTe$_{1-x}$Se$_x$ as Se concentration is reduced.
Neutron scattering has played a significant role in characterizing magnetic and structural correlations in Fe$_{1+y}$Te$_{1-x}$Se$_x$ and their connections with superconductivity. Here we review several key aspects of the physics of iron chalcogenide superconductors where neutron studies played a key role. These topics include the phase diagram of Fe$_{1+y}$Te$_{1-x}$Se$_{x}$, where the doping-dependence of structural transitions can be understood from a mapping to the anisotropic random field Ising model. We then discuss orbital-selective Mott physics in the Fe chalcogenide series, where temperature-dependent magnetism in the parent material provided one of the earliest cases for orbital-selective correlation effects in a Hunds metal. Finally, we elaborate on the character of local magnetic correlations revealed by neutron scattering, its dependence on temperature and composition, and the connections to nematicity and superconductivity.
It has recently been demonstrated that dynamical magnetic correlations measured by neutron scattering in iron chalcogenides can be described with models of short-range correlations characterized by particular {choices of four-spin plaquettes, where the appropriate choice changes as the} parent material is doped towards superconductivity. Here we apply such models to describe measured maps of magnetic scattering as a function of two-dimensional wave vectors obtained for optimally superconducting crystals of FeTe$_{1-x}$Se$_x$. We show that the characteristic antiferromagnetic wave vector evolves from that of the bicollinear structure found in underdoped chalcogenides (at high temperature) to that associated with the stripe structure of antiferromagnetic iron arsenides (at low temperature); {these can both be described with the same local plaquette, but with different inter-plaquette correlations}. While the magnitude of the low-energy magnetic spectral weight is substantial at all temperatures, it actually weakens somewhat at low temperature, where the charge carriers become more itinerant. The observed change in spin correlations is correlated with the dramatic drop in the electronic scattering rate and the growth of the bulk nematic response on cooling. Finally, we also present powder neutron diffraction results for lattice parameters in FeTe$_{1-x}$Se$_x$ indicating that the tetrahedral bond angle tends to increase towards the ideal value on cooling, in agreement with the increased screening of the crystal field by more itinerant electrons and the correspondingly smaller splitting of the Fe $3d$ orbitals.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا