No Arabic abstract
We develop modulation theory for undular bores (dispersive shock waves) in the framework of the Gardner, or extended Korteweg--de Vries, equation, which is a generic mathematical model for weakly nonlinear and weakly dispersive wave propagation, when effects of higher order nonlinearity become important. Using a reduced version of the finite-gap integration method we derive the Gardner-Whitham modulation system in a Riemann invariant form and show that it can be mapped onto the well-known modulation system for the Korteweg--de Vries equation. The transformation between the two counterpart modulation systems is, however, not invertible. As a result, the study of the resolution of an initial discontinuity for the Gardner equation reveals a rich phenomenology of solutions which, along with the KdV type simple undular bores, include nonlinear trigonometric bores, solibores, rarefaction waves and composite solutions representing various combinations of the above structures. We construct full parametric maps of such solutions for both signs of the cubic nonlinear term in the Gardner equation. Our classification is supported by numerical simulations.
Transcritical flow of a stratified fluid past a broad localised topographic obstacle is studied analytically in the framework of the forced extended Korteweg--de Vries (eKdV), or Gardner, equation. We consider both possible signs for the cubic nonlinear term in the Gardner equation corresponding to different fluid density stratification profiles. We identify the range of the input parameters: the oncoming flow speed (the Froude number) and the topographic amplitude, for which the obstacle supports a stationary localised hydraulic transition from the subcritical flow upstream to the supercritical flow downstream. Such a localised transcritical flow is resolved back into the equilibrium flow state away from the obstacle with the aid of unsteady coherent nonlinear wave structures propagating upstream and downstream. Along with the regular, cnoidal undular bores occurring in the analogous problem for the single-layer flow modeled by the forced KdV equation, the transcritical internal wave flows support a diverse family of upstream and downstream wave structures, including solibores, rarefaction waves, reversed and trigonometric undular bores, which we describe using the recent development of the nonlinear modulation theory for the (unforced) Gardner equation. The predictions of the developed analytic construction are confirmed by direct numerical simulations of the forced Gardner equation for a broad range of input parameters.
Original Whithams method of derivation of modulation equations is applied to systems whose dynamics is described by a perturbed Korteweg-de Vries equation. Two situations are distinguished: (i) the perturbation leads to appearance of right-hand sides in the modulation equations so that they become non-uniform; (ii) the perturbation leads to modification of the matrix of Whitham velocities. General form of Whitham modulation equations is obtained for each case. The essential difference between them is illustrated by an example of so-called `generalized Korteweg-de Vries equation. Method of finding steady-state solutions of perturbed Whitham equations in the case of dissipative perturbations is considered.
Solitons and breathers are localized solutions of integrable systems that can be viewed as particles of complex statistical objects called soliton and breather gases. In view of the growing evidence of their ubiquity in fluids and nonlinear optical media these integrable gases present fundamental interest for nonlinear physics. We develop analytical theory of breather and soliton gases by considering a special, thermodynamic type limit of the wavenumber-frequency relations for multi-phase (finite-gap) solutions of the focusing nonlinear Schrodinger equation. This limit is defined by the locus and the critical scaling of the band spectrum of the associated Zakharov-Shabat operator and yields the nonlinear dispersion relations for a spatially homogeneous breather or soliton gas, depending on the presence or absence of the background Stokes mode. The key quantity of interest is the density of states defining, in principle, all spectral and statistical properties of a soliton (breather) gas. The balance of terms in the nonlinear dispersion relations determines the nature of the gas: from an ideal gas of well separated, non-interacting breathers (solitons) to a special limiting state, which we term breather (soliton) condensate, and whose properties are entirely determined by the pairwise interactions between breathes (solitons). For a non-homogeneous breather gas, we derive a full set of kinetic equations describing slow evolution of the density of states and of its carrier wave counterpart. The kinetic equation for soliton gas is recovered by collapsing the Stokes spectral band. A number of concrete examples of breather and soliton gases are considered, demonstrating efficacy of the developed general theory with broad implications for nonlinear optics, superfluids and oceanography.
This paper considers the propagation of shallow-water solitary and nonlinear periodic waves over a gradual slope with bottom friction in the framework of a variable-coefficient Korteweg-de Vries equation. We use the Whitham averaging method, using a
Long time dynamics of the smoothed step initial value problem or dispersive Riemann problem for the Benjamin-Bona-Mahony (BBM) equation $u_t + uu_x = u_{xxt}$ are studied using asymptotic methods and numerical simulations. The catalog of solutions of the dispersive Riemann problem for the BBM equation is much richer than for the related, integrable, Korteweg-de Vries equation $u_t + uu_x + u_{xxx} =0.$ The transition width of the initial smoothed step is found to significantly impact the dynamics. Narrow width gives rise to rarefaction and dispersive shock wave (DSW) solutions that are accompanied by the generation of two-phase linear wavetrains, solitary wave shedding, and expansion shocks. Both narrow and broad initial widths give rise to two-phase nonlinear wavetrains or DSW implosion and a new kind of dispersive Lax shock for symmetric data. The dispersive Lax shock is described by an approximate self-similar solution of the BBM equation whose limit as $t to infty$ is a stationary, discontinuous weak solution. By introducing a slight asymmetry in the data for the dispersive Lax shock, the generation of an incoherent solitary wavetrain is observed. Further asymmetry leads to the DSW implosion regime that is effectively described by a pair of coupled nonlinear Schr{o}dinger equations. The complex interplay between nonlocality, nonlinearity and dispersion in the BBM equation underlies the rich variety of nonclassical dispersive hydrodynamic solutions to the dispersive Riemann problem.