Do you want to publish a course? Click here

Ion irradiation tolerance of graphene as studied by atomistic simulations

156   0   0.0 ( 0 )
 Added by Jani Kotakoski
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

As impermeable to gas molecules and at the same time transparent to high-energy ions, graphene has been suggested as a window material for separating a high-vacuum ion beam system from targets kept at ambient conditions. However, accumulation of irradiation-induced damage in the graphene membrane may give rise to its mechanical failure. Using atomistic simulations, we demonstrate that irradiated graphene even with a high vacancy concentration does not show signs of such instability, indicating a considerable robustness of graphene windows. We further show that upper and lower estimates for the irradiation damage in graphene can be set using a simple model.



rate research

Read More

169 - H. Kato , K. Hamaya , T. Taniyama 2005
We report on a promising approach to the artificial modification of ferromagnetic properties in (Ga,Mn)As using a Ga$^+$ focused ion beam (FIB) technique. The ferromagnetic properties of (Ga,Mn)As such as magnetic anisotropy and Curie temperature can be controlled using Ga$^+$ ion irradiation, originating from a change in hole concentration and the corresponding systematic variation in exchange interaction between Mn spins. This change in hole concentration is also verified using micro-Raman spectroscopy. We envisage that this approach offers a means of modifying the ferromagnetic properties of magnetic semiconductors on the micro- or nano-meter scale.
Many of the proposed future applications of graphene require the controlled introduction of defects into its perfect lattice. Energetic ions provide one way of achieving this challenging goal. Single heavy ions with kinetic energies in the 100 MeV range will produce nanometer-sized defects on dielectric but generally not on crystalline metal surfaces. In a metal the ion-induced electronic excitations are efficiently dissipated by the conduction electrons before the transfer of energy to the lattice atoms sets in. Therefore, graphene is not expected to be irradiation sensitive beyond the creation of point defects. Here we show that graphene on a dielectric substrate sustains major modifications if irradiated under oblique angles. Due to a combination of defect creation in the graphene layer and hillock creation in the substrate, graphene is split and folded along the ion track yielding double layer nanoribbons. Our results indicate that the radiation hardness of graphene devices is questionable but also open up a new way of introducing extended low-dimensional defects in a controlled way.
We show that the work function of exfoliated single layer graphene can be modified by irradiation with swift (E_{kin}=92 MeV) heavy ions under glancing angles of incidence. Upon ion impact individual surface tracks are created in graphene on SiC. Due to the very localized energy deposition characteristic for ions in this energy range, the surface area which is structurally altered is limited to ~ 0.01 mum^2 per track. Kelvin probe force microscopy reveals that those surface tracks consist of electronically modified material and that a few tracks suffice to shift the surface potential of the whole single layer flake by ~ 400 meV. Thus, the irradiation turns the initially n-doped graphene into p-doped graphene with a hole density of 8.5 x 10^{12} holes/cm^2. This doping effect persists even after heating the irradiated samples to 500{deg}C. Therefore, this charge transfer is not due to adsorbates but must instead be attributed to implanted atoms. The method presented here opens up a new way to efficiently manipulate the charge carrier concentration of graphene.
The ballistic performance of electron transport in nanowire transistors is examined using a 10 orbital sp3d5s* atomistic tight-binding model for the description of the electronic structure, and the top-of-the-barrier semiclassical ballistic model for calculation of the transport properties of the transistors. The dispersion is self consistently computed with a 2D Poisson solution for the electrostatic potential in the cross section of the wire. The effective mass of the nanowire changes significantly from the bulk value under strong quantization, and effects such as valley splitting strongly lift the degeneracies of the valleys. These effects are pronounced even further under filling of the lattice with charge. The effective mass approximation is in good agreement with the tight binding model in terms of current-voltage characteristics only in certain cases. In general, for small diameter wires, the effective mass approximation fails.
254 - A. Sud , S. Tacchi , D. Sagkovits 2021
We show a method to control magnetic interfacial effects in multilayers with Dzyaloshinskii-Moriya interaction (DMI) using helium (He$^{+}$) ion irradiation. We compare results from SQUID magnetometry, ferromagnetic resonance as well as Brillouin light scattering results on multilayers with DMI as a function of irradiation fluence to study the effect of irradiation on the magnetic properties of the multilayers. Our results show clear evidence of the He$^{+}$ irradiation effects on the magnetic properties which is consistent with interface modification due to the effects of the He$^{+}$ irradiation. This external degree of freedom offers promising perspectives to further improve the control of magnetic skyrmions in multilayers, that could push them towards integration in future technologies, such as in low-power neuromorphic computing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا