Do you want to publish a course? Click here

Single-Particle Distributions in Multi-Chain Model with successive collision for High-Energy Nucleus-Nucleus collisions

109   0   0.0 ( 0 )
 Added by Shin-Ichi Nakariki
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

High-energy nucleus-nucleus collisions are studied in multi-chain model with successive collision. Analytic forms for single-particle distribution are derived.



rate research

Read More

112 - B.Schenke , C.Greiner 2003
The various experimental data at AGS, SPS and RHIC energies on hadron particle yields for central heavy ion collisions are investigated by employing a generalized statistical density operator, that allows for a well-defined anisotropic local momentum distribution for each particle species, specified by a common streaming velocity parameter. The individual particle ratios are rather insensitive to a change in this new intensive parameter. This leads to the conclusion that the reproduction of particle ratios by a statistical treatment does not imply the existence of a fully isotropic local momentum distribution at hadrochemical freeze-out, i.e. a state of almost complete thermal equilibrium.
High-energy antinucleus-nucleus collisions are studied in the extended multi-chain model. The event probability of inclusive process is calculated by means of the operator matrix in the moment space. Analytic forms for single-particle distribution of inclusive process are derived.
We propose a novel method to search for the chiral magnetic effect (CME) in heavy ion collisions. We argue that the relative strength of the magnetic field (mainly from spectator protons and responsible for the CME) with respect to the reaction plane and the participant plane is opposite to that of the elliptic flow background arising from the fluctuating participant geometry. This opposite behavior in a single collision system, hence with small systematic uncertainties, can be exploited to extract the possible CME signal from the flow background. The method is applied to the existing data at RHIC, the outcome of which is discussed.
Measured J/Psi production cross sections for 200 and 450 GeV/c protons incident on a variety of nuclear targets are analyzed within a Glauber framework which takes into account energy loss of the beam proton, the time delay of particle production due to quantum coherence, and absorption of the J/Psi on nucleons. The best representation is obtained for a coherence time of 0.5 fm/c, previously determined by Drell-Yan production in proton-nucleus collisions, and an absorption cross section of 3.6 mb, which is consistent with the value deduced from photoproduction of the J/Psi on nuclear targets.
104 - V.P.Konchakovski 2009
Particle number fluctuations and correlations in nucleus-nucleus collisions at SPS and RHIC energies are studied within the statistical hadron-resonance gas model in different statistical ensembles and in the Hadron-String-Dynamics (HSD) transport approach. Event-by-event fluctuations of the proton to pion and kaon to proton number ratios are calculated in the HSD model for the samples of most central collision events and compared with the available experimental data. The role of the experimental acceptance and centrality selection is discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا