Do you want to publish a course? Click here

Parsec-Scale Radio Properties of Gamma-Ray Emitting Blazars

142   0   0.0 ( 0 )
 Added by Justin Linford
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The parsec-scale radio properties of blazars detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope have been investigated using observations with the Very Long Baseline Array (VLBA). Comparisons between LAT and non-LAT detected samples were made using contemporaneous data. In total, 232 sources were used in the LAT-detected sample. This very large, radio flux-limited sample of active galactic nuclei (AGN) provides insights into the mechanism that produces strong gamma-ray emission. It has been found that LAT-detected BL Lac objects are very similar to the non-LAT BL Lac objects in most properties, although LAT BL Lac objects may have longer jets. The LAT flat spectrum radio quasars (FSRQs) are significantly different from non-LAT FSRQs and are likely extreme members of the FSRQ population. Contemporaneous observations showed a strong correlation, whereas no correlation is found using archival radio data. Most of the differences between the LAT and non-LAT populations are related to the cores of the sources, indicating that the gamma-ray emission may originate near the base of the jets (i.e., within a few pc of the central engine). There is some indication that LAT-detected sources may have larger jet opening angles than the non-LAT sources. Strong core polarization is significantly more common among the LAT sources, suggesting that gamma-ray emission is related to strong, uniform magnetic fields at the base of the jets of the blazars. Observations of sources in two epochs indicate that core fractional polarization was higher when the objects were detected by the LAT. Included in our sample are several non-blazar AGN such as 3C84, M82, and NGC 6251.



rate research

Read More

We compare the gamma-ray light curves of the blazars, constructed with data provided by the Fermi Large Area Telescope, with flux and polarization variations in the VLBI core and bright superluminal knots obtained via monthly monitoring with the Very Long Baseline Array at 43 GHz. For all blazars in the sample that exhibit a high gamma-ray state on time scales from several weeks to several months, an increase of the total flux in the mm-wave core is contemporaneous with the gamma-ray activity (more than a third of the sample). Here we present the results for quasars with the most extreme gamma-ray behavior (3C 454.3, 3C 273, 3C 279, 1222+216, and 1633+382). The sources show that in addition to the total flux intensity behavior, a maximum in the degree of polarization in the core or bright superluminal knot nearest to the core coincides with the time of a gamma-ray peak to within the accuracy of the sampling of the radio data. These argue in favor of location of many of gamma-ray outbursts in blazars outside of the broad line region, either in the vicinity or downstream of the mm-wave VLBI core.
This work is a summary of the X-ray spectral studies of 29 TeV $gamma$-ray emitting blazars observed with Swift/XRT, especially focusing on sources for which X-ray regime allows to study the low and the high energy ends of the particle distributions function. Variability studies require simultaneous coverage, ideally sampling different flux states of each source. This is achieved using X-ray observations by disentangling the high-energy end of the synchrotron emission and the low-energy end of the Compton emission, which are produced by the same electron population. We focused on a sample of 29 TeV gamma-ray emitting blazars with the best signal-to-noise X-ray observations collected with Swift/XRT in the energy range of 0.3-10 keV during 10 years of Swift/XRT operations. We investigate the X-ray spectral shapes and the effects of different corrections for neutral hydrogen absorption and decompose the synchrotron and inverse Compton components. In the case of 5 sources (3C 66A, S5 0716+714, W Comae, 4C +21.35 and BL Lacertae) a superposition of both components is observed in the X-ray band, permitting simultaneous, time resolved studies of both ends of the electron distribution. The analysis of multi-epoch observations revealed that the break energy of X-ray spectrum varies only by a small factor with flux changes. Flux variability is more pronounced in the synchrotron domain (high-energy end of the electron distribution) than in the Compton domain (low energy end of the electron distribution). The spectral shape of the Compton domain is stable, while the flux of the synchrotron domain is variable. These changes cannot be described by simple variations of the cut-off energy, suggesting that the high-energy end of the electron distribution is not generally well-described by cooling only.
231 - J. D. Linford , G. B. Taylor , 2012
The parsec-scale radio properties of 232 active galactic nuclei (AGNs), most of which are blazars, detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope have been observed contemporaneously by the Very Long Baseline Array (VLBA) at 5 GHz. Data from both the first 11 months (1FGL) and the first 2 years (2FGL) of the Fermi mission were used to investigate these sources gamma-ray properties. We use the ratio of the gamma-ray to radio luminosity as a measure of gamma-ray loudness. We investigate the relationship of several radio properties to gamma-ray loudness and to the synchrotron peak frequency. There is a tentative correlation between gamma-ray loudness and synchrotron peak frequency for BL Lac objects in both 1FGL and 2FGL, and for flat-spectrum radio quasars (FSRQs) in 2FGL. We find that the apparent opening angle tentatively correlates with gamma-ray loudness for FSRQs, but only when we use the 2FGL data. We also find that the total VLBA flux density correlates with the synchrotron peak frequency for BL Lac objects and FSRQs. The core brightness temperature also correlates with synchrotron peak frequency, but only for the BL Lac objects. The low-synchrotron peaked (LSP) BL Lac object sample shows indications of contamination by FSRQs which happen to have undetectable emission lines. There is evidence that the LSP BL Lac objects are more strongly beamed than the rest of the BL Lac object population.
89 - R. Angioni , E. Ros , M. Kadler 2019
In the framework of the TANAMI multi-wavelength and VLBI monitoring, we study the evolution of the parsec-scale radio emission in radio galaxies in the southern hemisphere and their relationship to the $gamma$-ray properties. In this first paper, we focus on Fermi-LAT-detected sources. We perform a kinematic analysis for five $gamma$-ray detected radio galaxies using multi-epoch 8.4 GHz VLBI images, deriving limits on intrinsic jet parameters. We analyzed Fermi-LAT data in order to study possible connections between the $gamma$-ray properties and the pc-scale jets of Fermi-LAT-detected radio galaxies, both in terms of variability and average properties. We discuss the individual source results and draw preliminary conclusions on sample properties including published VLBI results from the MOJAVE survey, with a total of fifteen sources. We find that the first $gamma$-ray detection of Pictor A might be associated with the passage of a new VLBI component through the radio core. For the peculiar AGN PKS 0521-36, we detect subluminal parsec-scale jet motions, and we confirm the presence of fast $gamma$-ray variability in the source down to timescales of 6 hours. We robustly confirm the presence of significant superluminal motion, up to $beta_{app}sim$3, in the jet of the TeV radio galaxy PKS 0625-35. Finally, we place a lower limit on the age of the Compact Symmetric Object (CSO) PKS 1718-649. We draw some preliminary conclusions on the relationship between pc-scale jets and $gamma$-ray emission in radio galaxies. We find that the VLBI core flux density correlates with the $gamma$-ray flux, as seen in blazars. On the other hand, the $gamma$-ray luminosity does not show any dependence on the core brightness temperature and core dominance, two indicators of Doppler boosting, suggesting that $gamma$-ray emission in radio galaxies is not driven by orientation-dependent effects.
176 - M. L. Lister , M. Aller , H. Aller 2011
We investigate the Fermi LAT gamma-ray and 15 GHz VLBA radio properties of a joint gamma-ray- and radio-selected sample of AGNs obtained during the first 11 months of the Fermi mission (2008 Aug 4 - 2009 Jul 5). Our sample contains the brightest 173 AGNs in these bands above declination -30 deg. during this period, and thus probes the full range of gamma-ray loudness (gamma-ray to radio band luminosity ratio) in the bright blazar population. The latter quantity spans at least four orders of magnitude, reflecting a wide range of spectral energy distribution (SED) parameters in the bright blazar population. The BL Lac objects, however, display a linear correlation of increasing gamma-ray loudness with synchrotron SED peak frequency, suggesting a universal SED shape for objects of this class. The synchrotron self-Compton model is favored for the gamma-ray emission in these BL Lacs over external seed photon models, since the latter predict a dependence of Compton dominance on Doppler factor that would destroy any observed synchrotron SED peak - gamma-ray loudness correlation. The high-synchrotron peaked (HSP) BL Lac objects are distinguished by lower than average radio core brightness temperatures, and none display large radio modulation indices or high linear core polarization levels. No equivalent trends are seen for the flat-spectrum radio quasars (FSRQ) in our sample. Given the association of such properties with relativistic beaming, we suggest that the HSP BL Lacs have generally lower Doppler factors than the lower-synchrotron peaked BL Lacs or FSRQs in our sample.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا