We study the Mott transition in a frustrated Hubbard model with next-nearest neighbor hopping at half-filling. The interplay between interaction, dimensionality and geometric frustration closes the one-dimensional Mott gap and gives rise to a metallic phase with Fermi surface pockets. We argue that they emerge as a consequence of remnant one-dimensional Umklapp scattering at the momenta with vanishing interchain hopping matrix elements. In this pseudogap phase, enhanced d-wave pairing correlations are driven by antiferromagnetic fluctuations. Within the adopted cluster dynamical mean-field theory on the $8times 2$ cluster and down to our lowest temperatures the transition from one to two dimensions is continuous.