Do you want to publish a course? Click here

Massive stars in massive clusters II: Disruption of bound clusters by photoionization

133   0   0.0 ( 0 )
 Added by James Dale
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an SPH parameter study of the dynamical effect of photoionization from O--type stars on star--forming clouds of a range of masses and sizes during the time window before supernovae explode. Our model clouds all have the same degree of turbulent support initially, the ratio of turbulent kinetic energy to gravitational potential energy being set to $E_{rm kin}/|E_{rm pot}|$=0.7. We allow the clouds to form stars and study the dynamical effects of the ionizing radiation from the massive stars or clusters born within them. We find that dense filamentary structures and accretion flows limit the quantities of gas that can be ionized, particularly in the higher density clusters. More importantly, the higher escape velocities in our more massive (10$^{6}$M$_{odot}$) clouds prevent the HII regions from sweeping up and expelling significant quantities of gas, so that the most massive clouds are largely dynamically unaffected by ionizing feedback. However, feedback has a profound effect on the lower--density 10$^{4}$ and 10$^{5}$M$_{odot}$ clouds in our study, creating vast evacuated bubbles and expelling tens of percent of the neutral gas in the 3Myr timescale before the first supernovae are expected to detonate, resulting in clouds highly porous to both photons and supernova ejecta.



rate research

Read More

We extend our previous SPH parameter study of the effects of photoionization from O-stars on star-forming clouds to include initially unbound clouds. We generate a set of model clouds in the mass range $10^{4}-10^{6}$M$_{odot}$ with initial virial ratios $E_{rm kin}/E_{rm pot}$=2.3, allow them to form stars, and study the impact of the photoionizing radiation produced by the massive stars. We find that, on the 3Myr timescale before supernovae are expected to begin detonating, the fractions of mass expelled by ionizing feedback is a very strong function of the cloud escape velocities. High-mass clouds are largely unaffected dynamically, while lower-mass clouds have large fractions of their gas reserves expelled on this timescale. However, the fractions of stellar mass unbound are modest and significant portions of the unbound stars are so only because the clouds themselves are initially partially unbound. We find that ionization is much more able to create well-cleared bubbles in the unbound clouds, owing to their intrinsic expansion, but that the presence of such bubbles does not necessarily indicate that a given cloud has been strongly influenced by feedback. We also find, in common with the bound clouds from our earlier work, that many of the systems simulated here are highly porous to photons and supernova ejecta, and that most of them will likely survive their first supernova explosions.
Star clusters appear to be the ideal environment for the assembly of neutron star-neutron star (NS-NS) and black hole-neutron star (BH-NS) binaries. These binaries are among the most interesting astrophysical objects, being potential sources of gravitational waves (GWs) and gamma-ray bursts. We use for the first time high-precision N-body simulations of young massive and open clusters to study the origin and dynamical evolution of NSs, within clusters with different initial masses, metallicities, primordial binary fractions, and prescriptions for the compact object natal kicks at birth. We find that the radial profile of NSs is shaped by the BH content of the cluster, which partially quenches the NS segregation due to the BH-burning process. This leaves most of the NSs out of the densest cluster regions, where NS-NS and BH-NS binaries could potentially form. Due to a large velocity kick that they receive at birth, most of the NSs escape the host clusters, with the bulk of their retained population made up of NSs of $sim 1.3$ M$_odot$ coming from the electron-capture supernova process. The details of the primordial binary fraction and pairing can smear out this trend. Finally, we find that a subset of our models produce NS-NS mergers, leading to a rate of $sim 0.01$--$0.1$ Gpc$^{-3}$ yr$^{-1}$ in the local Universe, and compute an upper limit of $sim 3times 10^{-2}$--$3times 10^{-3}$ Gpc$^{-3}$ yr$^{-1}$ for the BH-NS merger rate. Our estimates are several orders of magnitude smaller than the current empirical merger rate from LIGO/Virgo, in agreement with the recent rate estimates for old globular clusters.
We present a study of the central radio activity of galaxy clusters at high redshift. Using a large sample of galaxy clusters at $0.7<z<1.5$ from the Massive and Distant Clusters of {it WISE} Survey and the Faint Images of the Radio Sky at Twenty-Centimeters $1.4$~GHz catalog, we measure the fraction of clusters containing a radio source within the central $500$~kpc, which we term the cluster radio-active fraction, and the fraction of cluster galaxies within the central $500$~kpc exhibiting radio emission. We find tentative ($2.25sigma$) evidence that the cluster radio-active fraction increases with cluster richness, while the fraction of cluster galaxies that are radio-luminous ($L_{1.4~mathrm{GHz}}geq10^{25}$~W~Hz$^{-1}$) does not correlate with richness at a statistically significant level. Compared to that calculated at $0 < z < 0.6$, the cluster radio-active fraction at $0 < z < 1.5$ increases by a factor of $10$. This fraction is also dependent on the radio luminosity. Clusters at higher redshift are much more likely to host a radio source of luminosity $L_{1.4~mathrm{GHz}}gtrsim10^{26}$~W~Hz$^{-1}$ than are lower redshift clusters. We compare the fraction of radio-luminous cluster galaxies to the fraction measured in a field environment. For $0.7<z<1.5$, we find that both the cluster and field radio-luminous galaxy fraction increases with stellar mass, regardless of environment, though at fixed stellar mass, cluster galaxies are roughly $2$ times more likely to be radio-luminous than field galaxies.
The young star clusters we observe today are the building blocks of a new generation of stars and planets in our Galaxy and beyond. Despite their fundamental role we still lack knowledge about the conditions under which star clusters form and the impact of these often harsh environments on the evolution of their stellar and substellar members. We demonstrate the vital role numerical simulations play to uncover both key issues. Using dynamical models of different star cluster environments we show the variety of effects stellar interactions potentially have. Moreover, our significantly improved measure of mass segregation reveals that it can occur rapidly even for star clusters without substructure. This finding is a critical step to resolve the controversial debate on mass segregation in young star clusters and provides strong constraints on their initial conditions.
Young massive clusters (YMCs) are the most intense regions of star formation in galaxies. Formulating a model for YMC formation whilst at the same time meeting the constraints from observations is highly challenging however. We show that forming YMCs requires clouds with densities $gtrsim$ 100 cm$^{-3}$ to collide with high velocities ($gtrsim$ 20 km s$^{-1}$). We present the first simulations which, starting from moderate cloud densities of $sim100$ cm$^{-3}$, are able to convert a large amount of mass into stars over a time period of around 1 Myr, to produce dense massive clusters similar to those observed. Such conditions are commonplace in more extreme environments, where YMCs are common, but atypical for our Galaxy, where YMCs are rare.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا