We have used high-resolution spectroscopy to observe the Kepler-16 eclipsing binary as a double-lined system, and measure precise radial velocities for both stellar components. These velocities yield a dynamical mass-ratio of q=0.2994+-0.0031. When combined with the inclination, i=90.3401+0.0016-0.0019 deg, measured from the Kepler photometric data by Doyle et al. 2011, we derive dynamical masses for the Kepler-16 components of M_A=0.654+-0.017 M_sun and M_B=0.1959+-0.0031 M_sun, a precision of 2.5% and 1.5% respectively. Our results confirm at the ~2% level the mass-ratio derived by Doyle et al. with their photometric-dynamical model, q=0.2937+-0.0006. These are among the most precise spectroscopic dynamical masses ever measured for low-mass stars, and provide an important direct test of the results from the photometric-dynamical modeling technique.