No Arabic abstract
In usual scale-free networks of Barabasi-Albert type, a newly added node selects randomly m neighbors from the already existing network nodes, proportionally to the number of links these had before. Then the number N(k) of nodes with k links each decays as 1/k^gamma where gamma=3 is universal, i.e. independent of m. Now we use a limited directedness in the construction of the network, as a result of which the exponent gamma decreases from 3 to 2 for increasing m.
We check the existence of a spontaneous magnetisation of Ising and Potts spins on semi-directed Barabasi-Albert networks by Monte Carlo simulations. We verified that the magnetisation for different temperatures $T$ decays after a characteristic time $tau(T)$, which we extrapolate to diverge at positive temperatures $T_c(N)$ by a Vogel-Fulcher law, with $T_c(N)$ increasing logarithmically with network size $N$.
Using Monte Carlo simulations, we study the evolution of contigent cooperation and ethnocentrism in the one-move game. Interactions and reproduction among computational agents are simulated on {it undirected} and {it directed} Barabasi-Albert (BA) networks. We first replicate the Hammond-Axelrod model of in-group favoritism on a square lattice and then generalize this model on {it undirected} and {it directed} BA networks for both asexual and sexual reproduction cases. Our simulations demonstrate that irrespective of the mode of reproduction, ethnocentric strategy becomes common even though cooperation is individually costly and mechanisms such as reciprocity or conformity are absent. Moreover, our results indicate that the spread of favoritism toward similar others highly depends on the network topology and the associated heterogeneity of the studied population.
With up to 7 million spins, the existence of spontaneous magnetization of Ising spins on directed Barabasi-Albert networks is investigated by Monte Carlo simulations. We confirm our earlier result that the magnetization for different temperatures T decays after a characteristic time tau(T), which we extrapolate to diverge at zero temperature by a modified Arrhenius law,or perhaps a power law.
The existence of spontaneous magnetization of Ising spins on directed Barabasi-Albert networks is investigated with seven neighbors, by using Monte Carlo simulations. In large systems we see the magnetization for different temperatures T to decay after a characteristic time tau, which is extrapolated to diverge at zero temperature.
We consider two consensus formation models coupled to Barabasi-Albert networks, namely the Majority Vote model and Biswas-Chatterjee-Sen model. Recent works point to a non-universal behavior of the Majority Vote model, where the critical exponents have a dependence on the connectivity while the effective dimension $D_mathrm{eff} = 2beta/ u + gamma/ u$ of the lattice is unity. We considered a generalization of the scaling relations in order to include logarithmic corrections. We obtained the leading critical exponent ratios $1/ u$, $beta/ u$, and $gamma/ u$ by finite size scaling data collapses, as well as the logarithmic correction pseudo-exponents $widehat{lambda}$, $widehat{beta}+betawidehat{lambda}$, and $widehat{gamma}-gammawidehat{lambda}$. By comparing the scaling behaviors of the Majority Vote and Biswas-Chatterjee-Sen models, we argue that the exponents of Majority Vote model, in fact, are universal. Therefore, they do not depend on network connectivity. In addition, the critical exponents and the universality class are the same of Biswas-Chatterjee-Sen model, as seen for periodic and random graphs. However, the Majority Vote model has logarithmic corrections on its scaling properties, while Biswas-Chatterjee-Sen model follows usual scaling relations without logarithmic corrections.