Do you want to publish a course? Click here

A GPU Tool for Efficient, Accurate, and Realistic Simulation of Cone Beam CT Projections

505   0   0.0 ( 0 )
 Added by Xun Jia
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Simulation of x-ray projection images plays an important role in cone beam CT (CBCT) related research projects. A projection image contains primary signal, scatter signal, and noise. It is computationally demanding to perform accurate and realistic computations for all of these components. In this work, we develop a package on GPU, called gDRR, for the accurate and efficient computations of x-ray projection images in CBCT under clinically realistic conditions. The primary signal is computed by a tri-linear ray-tracing algorithm. A Monte Carlo (MC) simulation is then performed, yielding the primary signal and the scatter signal, both with noise. A denoising process is applied to obtain a smooth scatter signal. The noise component is then obtained by combining the difference between the MC primary and the ray-tracing primary signals, and the difference between the MC simulated scatter and the denoised scatter signals. Finally, a calibration step converts the calculated noise signal into a realistic one by scaling its amplitude. For a typical CBCT projection with a poly-energetic spectrum, the calculation time for the primary signal is 1.2~2.3 sec, while the MC simulations take 28.1~95.3 sec. Computation time for all other steps is negligible. The ray-tracing primary signal matches well with the primary part of the MC simulation result. The MC simulated scatter signal using gDRR is in agreement with EGSnrc results with a relative difference of 3.8%. A noise calibration process is conducted to calibrate gDRR against a real CBCT scanner. The calculated projections are accurate and realistic, such that beam-hardening artifacts and scatter artifacts can be reproduced using the simulated projections. The noise amplitudes in the CBCT images reconstructed from the simulated projections also agree with those in the measured images at corresponding mAs levels.



rate research

Read More

221 - Hao Yan , Xiaoyu Wang , Wotao Yin 2012
Patient respiratory signal associated with the cone beam CT (CBCT) projections is important for lung cancer radiotherapy. In contrast to monitoring an external surrogate of respiration, such signal can be extracted directly from the CBCT projections. In this paper, we propose a novel local principle component analysis (LPCA) method to extract the respiratory signal by distinguishing the respiration motion-induced content change from the gantry rotation-induced content change in the CBCT projections. The LPCA method is evaluated by comparing with three state-of-the-art projection-based methods, namely, the Amsterdam Shroud (AS) method, the intensity analysis (IA) method, and the Fourier-transform based phase analysis (FT-p) method. The clinical CBCT projection data of eight patients, acquired under various clinical scenarios, were used to investigate the performance of each method. We found that the proposed LPCA method has demonstrated the best overall performance for cases tested and thus is a promising technique for extracting respiratory signal. We also identified the applicability of each existing method.
176 - Xin Zhen , Xuejun Gu , Hao Yan 2012
Computed tomography (CT) to cone-beam computed tomography (CBCT) deformable image registration (DIR) is a crucial step in adaptive radiation therapy. Current intensity-based registration algorithms, such as demons, may fail in the context of CT-CBCT DIR because of inconsistent intensities between the two modalities. In this paper, we propose a variant of demons, called Deformation with Intensity Simultaneously Corrected (DISC), to deal with CT-CBCT DIR. DISC distinguishes itself from the original demons algorithm by performing an adaptive intensity correction step on the CBCT image at every iteration step of the demons registration. Specifically, the intensity correction of a voxel in CBCT is achieved by matching the first and the second moments of the voxel intensities inside a patch around the voxel with those on the CT image. It is expected that such a strategy can remove artifacts in the CBCT image, as well as ensuring the intensity consistency between the two modalities. DISC is implemented on computer graphics processing units (GPUs) in compute unified device architecture (CUDA) programming environment. The performance of DISC is evaluated on a simulated patient case and six clinical head-and-neck cancer patient data. It is found that DISC is robust against the CBCT artifacts and intensity inconsistency and significantly improves the registration accuracy when compared with the original demons.
Cone beam CT (CBCT) has been widely used for patient setup in image guided radiation therapy (IGRT). Radiation dose from CBCT scans has become a clinical concern. The purposes of this study are 1) to commission a GPU-based Monte Carlo (MC) dose calculation package gCTD for Varian On-Board Imaging (OBI) system and test the calculation accuracy, and 2) to quantitatively evaluate CBCT dose from the OBI system in typical IGRT scan protocols. We first conducted dose measurements in a water phantom. X-ray source model parameters used in gCTD are obtained through a commissioning process. gCTD accuracy is demonstrated by comparing calculations with measurements in water and in CTDI phantoms. 25 brain cancer patients are used to study dose in a standard-dose head protocol, and 25 prostate cancer patients are used to study dose in pelvis protocol and pelvis spotlight protocol. Mean dose to each organ is calculated. Mean dose to 2% voxels that have the highest dose is also computed to quantify the maximum dose. It is found that the mean dose value to an organ varies largely among patients. Moreover, dose distribution is highly non-homogeneous inside an organ. The maximum dose is found to be 1~3 times higher than the mean dose depending on the organ, and is up to 8 times higher for the entire body due to the very high dose region in bony structures. High computational efficiency has also been observed in our studies, such that MC dose calculation time is less than 5 min for a typical case.
Adaptive radiotherapy (ART), especially online ART, effectively accounts for positioning errors and anatomical changes. One key component of online ART is accurately and efficiently delineating organs at risk (OARs) and targets on online images, such as CBCT, to meet the online demands of plan evaluation and adaptation. Deep learning (DL)-based automatic segmentation has gained great success in segmenting planning CT, but its applications to CBCT yielded inferior results due to the low image quality and limited available contour labels for training. To overcome these obstacles to online CBCT segmentation, we propose a registration-guided DL (RgDL) segmentation framework that integrates image registration algorithms and DL segmentation models. The registration algorithm generates initial contours, which were used as guidance by DL model to obtain accurate final segmentations. We had two implementations the proposed framework--Rig-RgDL (Rig for rigid body) and Def-RgDL (Def for deformable)--with rigid body (RB) registration or deformable image registration (DIR) as the registration algorithm respectively and U-Net as DL model architecture. The two implementations of RgDL framework were trained and evaluated on seven OARs in an institutional clinical Head and Neck (HN) dataset. Compared to the baseline approaches using the registration or the DL alone, RgDL achieved more accurate segmentation, as measured by higher mean Dice similarity coefficients (DSC) and other distance-based metrics. Rig-RgDL achieved a DSC of 84.5% on seven OARs on average, higher than RB or DL alone by 4.5% and 4.7%. The DSC of Def-RgDL is 86.5%, higher than DIR or DL alone by 2.4% and 6.7%. The inference time took by the DL model to generate final segmentations of seven OARs is less than one second in RgDL. The resulting segmentation accuracy and efficiency show the promise of applying RgDL framework for online ART.
154 - Hao Yan , Laura Cervino , Xun Jia 2011
While compressed sensing (CS) based reconstructions have been developed for low-dose CBCT, a clear understanding on the relationship between the image quality and imaging dose at low dose levels is needed. In this paper, we qualitatively investigate this subject in a comprehensive manner with extensive experimental and simulation studies. The basic idea is to plot image quality and imaging dose together as functions of number of projections and mAs per projection over the whole clinically relevant range. A clear understanding on the tradeoff between image quality and dose can be achieved and optimal low-dose CBCT scan protocols can be developed for various imaging tasks in IGRT. Main findings of this work include: 1) Under the CS framework, image quality has little degradation over a large dose range, and the degradation becomes evident when the dose < 100 total mAs. A dose < 40 total mAs leads to a dramatic image degradation. Optimal low-dose CBCT scan protocols likely fall in the dose range of 40-100 total mAs, depending on the specific IGRT applications. 2) Among different scan protocols at a constant low-dose level, the super sparse-view reconstruction with projection number less than 50 is the most challenging case, even with strong regularization. Better image quality can be acquired with other low mAs protocols. 3) The optimal scan protocol is the combination of a medium number of projections and a medium level of mAs/view. This is more evident when the dose is around 72.8 total mAs or below and when the ROI is a low-contrast or high-resolution object. Based on our results, the optimal number of projections is around 90 to 120. 4) The clinically acceptable lowest dose level is task dependent. In our study, 72.8mAs is a safe dose level for visualizing low-contrast objects, while 12.2 total mAs is sufficient for detecting high-contrast objects of diameter greater than 3 mm.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا