No Arabic abstract
We analysed data from five XMM-Newton observations of GX 13+1 to investigate the variability of the photo-ionised absorber present in this source. We fitted EPIC and RGS spectra obtained from the least-variable intervals with a model consisting of disc-blackbody and blackbody components together with a Gaussian emission feature at ~6.55-6.7 keV modified by absorption due to cold and photo-ionised material. We found a significant correlation between the hard, ~6-10 keV, flux, the ionisation and column density of the absorber and the equivalent width of the broad iron line. We interpret the correlation in a scenario in which a disc wind is thermally driven at large, ~10^{10} cm, radii and the broad line results from reprocessed emission in the wind and/or hot atmosphere. The breadth of the emission line is naturally explained by a combination of scattering, recombination and fluorescence processes. We attribute the variations in the absorption and emission along the orbital period to the view of different parts of the wind, possibly located at slightly different inclination angles. We constrain the inclination of GX 13+1 to be between 60 and 80 degrees from the presence of strong absorption in the line of sight, that obscures up to 80% of the total emission in one observation, and the absence of eclipses. We conclude that the presence of a disc wind and/or a hot atmosphere can explain the current observations of narrow absorption and broad iron emission features in neutron star low mass X-ray binaries as a class.
We report on the analysis of the broad Fe Kalpha line feature of Cygnus X-1 in the spectra of four simultaneous hard intermediate state observations made with the X-ray Multiple Mirror mission (XMM-Newton), the Rossi X-ray Timing Explorer (RXTE), and the International Gamma-Ray Astrophysics Laboratory (INTEGRAL). The high quality of the XMM-Newton data taken in the Modified Timing Mode of the EPIC-pn camera provides a great opportunity to investigate the broadened Fe Kalpha reflection line at 6.4keV with a very high signal to noise ratio. The 4-500keV energy range is used to constrain the underlying continuum and the reflection at higher energies. We first investigate the data by applying a phenomenological model that consists of the sum of an exponentially cutoff power law and relativistically smeared reflection. Additionally, we apply a more physical approach and model the irradiation of the accretion disk directly from the lamp post geometry. All four observations show consistent values for the black hole parameters with a spin of $asim 0.9$, in agreement with recent measurements from reflection and disk continuum fitting. The inclination is found to be $isim30^circ$, consistent with the orbital inclination and different from inclination measurements made during the soft state, which show a higher inclination. We speculate that the difference between the inclination measurements is due to changes in the inner region of the accretion disk.
Since the discovery of the first broad iron-K line in 1995 from the Seyfert Galaxy MCG--6-30-15, broad iron-K lines have been found in several other Seyfert galaxies, from accreting stellar mass black holes and even from accreting neutron stars. The iron-K line is prominent in the reflection spectrum created by the hard X-ray continuum irradiating dense accreting matter. Relativistic distortion of the line makes it sensitive to the strong gravity and spin of the black hole. The accompanying iron-L line emission should be detectable when the iron abundance is high. Here we report the first discovery of both iron-K and L emission, using XMM-Newton observations of the Narrow-Line Seyfert 1 Galaxy 1H0707-495. The bright Fe-L emission has enabled us, for the first time, to detect a reverberation lag of 30 s between the direct X-ray continuum and its reflection from matter falling into the hole. The observed reverberation timescale is comparable to the light-crossing time of the innermost radii around a supermassive black hole. The combination of spectral and timing data on 1H0707-495 provides strong evidence that we are witnessing emission from matter within a gravitational radius, or a fraction of a light-minute, from the event horizon of a rapidly-spinning, massive black hole.
X-ray spectra of many accreting pulsars exhibit significant variations as a function of flux and thus of mass accretion rate. In some of these pulsars, the centroid energy of the cyclotron line(s), which characterizes the magnetic field strength at the site of the X-ray emission, has been found to vary systematically with flux. GX 304-1 is a recently established cyclotron line source with a line energy around 50 keV. Since 2009, the pulsar shows regular outbursts with the peak flux exceeding one Crab. We analyze the INTEGRAL observations of the source during its outburst in January-February 2012. The observations covered almost the entire outburst, allowing us to measure the sources broad-band X-ray spectrum at different flux levels. We report on the variations in the spectral parameters with luminosity and focus on the variations in the cyclotron line. The centroid energy of the line is found to be positively correlated with the luminosity. We interpret this result as a manifestation of the local sub-Eddington (sub-critical) accretion regime operating in the source.
We present an in-depth study of the High Mass X-ray Binary (HMXB) GX 301-2 during its pre-periastron flare using data from the XMM-Newton satellite. The energy spectrum shows a power law continuum absorbed by a large equivalent hydrogen column on the order of 10^24 cm^2 and a prominent Fe K-alpha fluorescent emission line. Besides the Fe K-alpha line, evidence for Fe K-beta, Ni K-alpha, Ni K-beta, S K-alpha, Ar K-alpha, Ca K-alpha, and Cr K-alpha fluorescent lines is found. The observed line strengths are consistent with fluorescence in a cold absorber. This is the first time that a Cr K-alpha line is seen in emission in the X-ray spectrum of a HMXB. In addition to the modulation by the strong pulse period of ~685 sec the source is highly variable and shows different states of activity. We perform time-resolved as well as pulse-to-pulse resolved spectroscopy to investigate differences between these states of activity. We find that the fluorescent line fluxes are strongly variable and generally follow the overall flux. The N_H value is variable by a factor of 2, but not correlated to the continuum normalization. We find an interval of low flux in the light curve in which the pulsations cease almost completely, without any indication of an increasing absorption column. We investigate this dip in detail and argue that it is most likely that during the dip the accretion ceased and the afterglow of the fluorescent iron accounted for the main portion of the X-ray flux. A similar dip was found earlier in RXTE data, and we compare our findings to these results
We present the results from XMM-Newton observations of the highly optically polarized broad absorption line quasar (BALQSO) CSO 755. By analyzing its X-ray spectrum with a total of ~3000 photons we find that this source has an X-ray continuum of `typical radio-quiet quasars, with a photon index of Gamma=1.83^{+0.07}_{-0.06}, and a rather flat (X-ray bright) intrinsic optical-to-X-ray spectral slope of alpha_ox=-1.51. The source shows evidence for intrinsic absorption, and fitting the spectrum with a neutral-absorption model gives a column density of N_H~1.2x10^{22} cm^{-2}; this is among the lowest X-ray columns measured for BALQSOs. We do not detect, with high significance, any other absorption features in the X-ray spectrum. Upper limits we place on the rest-frame equivalent width of a neutral (ionized) Fe Ka line, <=180 eV (<=120 eV), and on the Compton-reflection component parameter, R<=0.2, suggest that most of the X-rays from the source are directly observed rather than being scattered or reflected; this is also supported by the relatively flat intrinsic alpha_ox we measure. The possibility that most of the X-ray flux is scattered due to the high level of UV-optical polarization is ruled out. Considering data for 46 BALQSOs from the literature, including CSO 755, we have found that the UV-optical continuum polarization level of BALQSOs is not correlated with any of their X-ray properties. A lack of significant short- and long-term X-ray flux variations in the source may be attributed to a large black-hole mass in CSO 755. We note that another luminous BALQSO, PG 2112+059, has both similar shallow C IV BALs and moderate X-ray absorption.