Do you want to publish a course? Click here

Elliptic Genera of Non-compact Gepner Models and Mirror Symmetry

110   0   0.0 ( 0 )
 Added by Sujay Ashok
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

We consider tensor products of N=2 minimal models and non-compact conformal field theories with N=2 superconformal symmetry, and their orbifolds. The elliptic genera of these models give rise to a large and interesting class of real Jacobi forms. The tensor product of conformal field theories leads to a natural product on the space of completed mock modular forms. We exhibit families of non-compact mirror pairs of orbifold models with c=9 and show explicitly the equality of elliptic genera, including contributions from the long multiplet sector. The Liouville and cigar deformed elliptic genera transform into each other under the mirror transformation.



rate research

Read More

We study non-compact Gepner models that preserve sixteen or eight supercharges in type II string theories. In particular, we develop an orbifolded Landau-Ginzburg description of these models analogous to the Landau-Ginzburg formulation of compact Gepner models. The Landau-Ginzburg description provides an easy and direct access to the geometry of the singularity associated to the non-compact Gepner models. Using these tools, we are able to give an intuitive account of the chiral rings of the models, and of the massless moduli in particular. By studying orbifolds of the singular linear dilaton models, we describe mirror pairs of non-compact Gepner models by suitably adapting the Greene-Plesser construction of mirror pairs for the compact case. For particular models, we take a large level, low curvature limit in which we can analyze corrections to a flat space orbifold approximation of the non-compact Gepner models. This gives rise to a counting of moduli which differs from the toric counting in a subtle way.
We reconsider a class of heterotic string theories studied in 1989, based on tensor products of N=2 minimal models with asymmetric simple current invariants. We extend this analysis from (2,2) and (1,2) spectra to (0,2) spectra with SO(10) broken to the Standard Model. In the latter case the spectrum must contain fractionally charged particles. We find that in nearly all cases at least some of them are massless. However, we identify a large subclass where the fractional charges are at worst half-integer, and often vector-like. The number of families is very often reduced in comparison to the 1989 results, but there are no new tensor combinations yielding three families. All tensor combinations turn out to fall into two classes: those where the number of families is always divisible by three, and those where it is never divisible by three. We find an empirical rule to determine the class, which appears to extend beyond minimal N=2 tensor products. We observe that distributions of physical quantities such as the number of families, singlets and mirrors have an interesting tendency towards smaller values as the gauge groups approaches the Standard Model. We compare our results with an analogous class of free fermionic models. This displays similar features, but with less resolution.Finally we present a complete scan of the three family models based on the triply-exceptional combination (1,16*,16*,16*) identified originally by Gepner. We find 1220 distinct three family spectra in this case, forming 610 mirror pairs. About half of them have the gauge group SU(3) x SU(2)_L x SU(2)_R x U(1)^5, the theoretical minimum, and many others are trinification models.
172 - M. Maio , A.N. Schellekens 2011
We study orbifolds by permutations of two identical N=2 minimal models within the Gepner construction of four dimensional heterotic strings. This is done using the new N=2 supersymmetric permutation orbifold building blocks we have recently developed. We compare our results with the old method of modding out the full string partition function. The overlap between these two approaches is surprisingly small, but whenever a comparison can be made we find complete agreement. The use of permutation building blocks allows us to use the complete arsenal of simple current techniques that is available for standard Gepner models, vastly extending what could previously be done for permutation orbifolds. In particular, we consider (0,2) models, breaking of SO(10) to subgroups, weight-lifting for the minimal models and B-L lifting. Some previously observed phenomena, for example concerning family number quantization, extend to this new class as well, and in the lifted models three family models occur with abundance comparable to two or four.
We analyze the locus, together with multiplicities, of bad conformal field theories in the compactified moduli space of N=(2,2) superconformal field theories in the context of the generalization of the Batyrev mirror construction using the gauged linear sigma-model. We find this discriminant of singular theories is described beautifully by the GKZ A-determinant but only if we use a noncompact toric Calabi-Yau variety on the A-model side and logarithmic coordinates on the B-model side. The two are related by local mirror symmetry. The corresponding statement for the compact case requires changing multiplicities in the GKZ determinant. We then describe a natural structure for monodromies around components of this discriminant in terms of spherical functors. This can be considered a categorification of the GKZ A-determinant. Each component of the discriminant is naturally associated with a category of massless D-branes.
A systematic study of lifted Gepner models is presented. Lifted Gepner models are obtained from standard Gepner models by replacing one of the N=2 building blocks and the $E_8$ factor by a modular isomorphic $N=0$ model on the bosonic side of the heterotic string. The main result is that after this change three family models occur abundantly, in sharp contrast to ordinary Gepner models. In particular, more than 250 new and unrelated moduli spaces of three family models are identified. We discuss the occurrence of fractionally charged particles in these spectra.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا