Do you want to publish a course? Click here

Hyperon-Nucleon Interactions and the Composition of Dense Nuclear Matter from Quantum Chromodynamics

129   0   0.0 ( 0 )
 Added by Silas Beane
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

The low-energy neutron-Sigma^- interactions determine, in part, the role of the strange quark in dense matter, such as that found in astrophysical environments. The scattering phase shifts for this system are obtained from a numerical evaluation of the QCD path integral using the technique of Lattice QCD. Our calculations, performed at a pion mass of m_pi ~ 389 MeV in two large lattice volumes, and at one lattice spacing, are extrapolated to the physical pion mass using effective field theory. The interactions determined from QCD are consistent with those extracted from hyperon-nucleon experimental data within uncertainties, and strengthen theoretical arguments that the strange quark is a crucial component of dense nuclear matter.



rate research

Read More

A three-dimensional effective lattice theory of Polyakov loops is derived from QCD by expansions in the fundamental character of the gauge action, u, and the hopping parameter, kappa, whose action is correct to kappa^n u^m with n+m=4. At finite baryon density, the effective theory has a sign problem which meets all criteria to be simulated by complex Langevin as well as by Monte Carlo on small volumes. The theory is valid for the thermodynamics of heavy quarks, where its predictions agree with simulations of full QCD at zero and imaginary chemical potential. In its region of convergence, it is moreover amenable to perturbative calculations in the small effective couplings. In this work we study the challenging cold and dense regime. We find unambiguous evidence for the nuclear liquid gas transition once the baryon chemical potential approaches the baryon mass, and calculate the nuclear equation of state. In particular, we find a negative binding energy per nucleon causing the condensation, whose absolute value decreases exponentially as mesons get heavier. For decreasing meson mass, we observe a first order liquid gas transition with an endpoint at some finite temperature, as well as gap between the onset of isospin and baryon condensation.
158 - S.R. Beane , E. Chang , S. Cohen 2014
We present the results of lattice QCD calculations of the magnetic moments of the lightest nuclei, the deuteron, the triton and ${}^3$He, along with those of the neutron and proton. These calculations, performed at quark masses corresponding to $m_pi sim 800$ MeV, reveal that the structure of these nuclei at unphysically heavy quark masses closely resembles that at the physical quark masses. In particular, we find that the magnetic moment of ${}^3$He differs only slightly from that of a free neutron, as is the case in nature, indicating that the shell-model configuration of two spin-paired protons and a valence neutron captures its dominant structure. Similarly a shell-model-like moment is found for the triton, $mu_{{}^3{rm H}} sim mu_p$. The deuteron magnetic moment is found to be equal to the nucleon isoscalar moment within the uncertainties of the calculations.
The interactions between two octet baryons are studied at low energies using lattice QCD (LQCD) with larger-than-physical quark masses corresponding to a pion mass of $m_{pi}sim 450$ MeV and a kaon mass of $m_{K}sim 596$ MeV. The two-baryon systems that are analyzed range from strangeness $S=0$ to $S=-4$ and include the spin-singlet and triplet $NN$, $Sigma N$ ($I=3/2$), and $XiXi$ states, the spin-singlet $SigmaSigma$ ($I=2$) and $XiSigma$ ($I=3/2$) states, and the spin-triplet $Xi N$ ($I=0$) state. The $s$-wave scattering phase shifts, low-energy scattering parameters, and binding energies when applicable, are extracted using Luschers formalism. While the results are consistent with most of the systems being bound at this pion mass, the interactions in the spin-triplet $Sigma N$ and $XiXi$ channels are found to be repulsive and do not support bound states. Using results from previous studies at a larger pion mass, an extrapolation of the binding energies to the physical point is performed and is compared with experimental values and phenomenological predictions. The low-energy coefficients in pionless EFT relevant for two-baryon interactions, including those responsible for $SU(3)$ flavor-symmetry breaking, are constrained. The $SU(3)$ symmetry is observed to hold approximately at the chosen values of the quark masses, as well as the $SU(6)$ spin-flavor symmetry, predicted at large $N_c$. A remnant of an accidental $SU(16)$ symmetry found previously at a larger pion mass is further observed. The $SU(6)$-symmetric EFT constrained by these LQCD calculations is used to make predictions for two-baryon systems for which the low-energy scattering parameters could not be determined with LQCD directly in this study, and to constrain the coefficients of all leading $SU(3)$ flavor-symmetric interactions, demonstrating the predictive power of two-baryon EFTs matched to LQCD.
On the basis of the Brueckner-Hartree-Fock method with the nucleon-nucleon forces obtained from lattice QCD simulations, the properties of the medium-heavy doubly-magic nuclei such as 16^O and 40^Ca are investigated. We found that those nuclei are bound for the pseudo-scalar meson mass M_PS ~ 470 MeV. The mass number dependence of the binding energies, single-particle spectra and density distributions are qualitatively consistent with those expected from empirical data at the physical point, although these hypothetical nuclei at heavy quark mass have smaller binding energies than the real nuclei.
The binding energies of a range of nuclei and hypernuclei with atomic number A <= 4 and strangeness |s| <= 2, including the deuteron, di-neutron, H-dibaryon, 3He, Lambda 3He, Lambda 4He, and Lambda Lambda 4He, are calculated in the limit of flavor-SU(3) symmetry at the physical strange quark mass with quantum chromodynamics (without electromagnetic interactions). The nuclear states are extracted from Lattice QCD calculations performed with n_f=3 dynamical light quarks using an isotropic clover discretization of the quark-action in three lattice volumes of spatial extent L ~ 3.4 fm, 4.5 fm and 6.7 fm, and with a single lattice spacing b ~ 0.145 fm.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا