Do you want to publish a course? Click here

Long wavelength helimagnetic order and skyrmion lattice phase in Cu2OSeO3

287   0   0.0 ( 0 )
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report a long-wavelength helimagnetic superstructure in bulk samples of the ferrimagnetic insulator Cu2OSeO3. The magnetic phase diagram associated with the helimagnetic modulation inferred from small angle neutron scattering and magnetisation measurements includes a skyrmion lattice phase and is strongly reminiscent of MnSi, FeGe and Fe1-xCoxSi, i.e., binary isostructural siblings of Cu2OSeO3 that order helimagnetically. The temperature dependence of the specific heat of Cu2OSeO3 is characteristic of nearly critical spin fluctuations at the helimagnetic transition. This provides putative evidence for effective spin currents as the origin of enhancements of the magneto-dielectric response instead of atomic displacements considered so far.

rate research

Read More

We report the observation of the skyrmion lattice in the chiral multiferroic insulator Cu2OSeO3 using Cu L3-edge resonant soft x-ray diffraction. We observe the unexpected existence of two distinct skyrmion sublattices that arise from inequivalent Cu sites with chemically identical coordination numbers but different magnetically active orbitals. The skyrmion sublattices are rotated with respect to each other implying a long wavelength modulation of the lattice. The modulation vector could be controlled with an applied magnetic field, associating this Moire-like phase with a continuous phase transition. Our findings will open a new class of science involving manipulation of quantum topological states.
We investigate the anisotropic nature of magnetocrystalline coupling between the crystallographic and skyrmion crystal (SKX) lattices in the chiral magnet MnSi by magnetic field-angle resolved resonant ultrasound spectroscopy. Abrupt changes are observed in the elastic moduli and attenuation when the magnetic field is parallel to the [011] crystallographic direction. These observations are interpreted in a phenomenological Ginzburg-Landau theory that identifies switching of the SKX orientation to be the result of an anisotropic magnetocrystalline coupling potential. Our paper sheds new light on the nature of magnetocrystalline coupling potential relevant to future spintronic applications.
For the skyrmion-hosting intermetallic Gd$_2$PdSi$_3$ with centrosymmetric hexagonal lattice and triangular net of rare earth sites, we report a thorough investigation of the magnetic phase diagram. Our work reveals a new magnetic phase with isotropic value of the critical field for all orientations, where the magnetic ordering vector $mathbf{q}$ is depinned from its preferred directions in the basal plane. This is in contrast to the highly anisotropic behavior of the low field phases, such as the skyrmion lattice (SkL), which are easily destroyed by in-plane magnetic field. The bulk nature of the SkL and of other magnetic phases was evidenced by specific-heat measurements. Resistivity anisotropy, likely originating from partial gapping of the density of states along $mathbf{q}$ in this RKKY magnet, is picked up via the planar Hall effect (PHE). The PHE confirms the single-$mathbf{q}$ nature of the magnetic order when the field is in the hexagonal plane, and allows to detect the preferred directions of $mathbf{q}$. For field aligned perpendicular to the basal plane, several scenarios for the depinned phase (DP), such as tilted conical order, are discussed on the basis of the data.
We present the results of transverse field (TF) muon-spin rotation (muSR) measurements on Cu2OSeO3, which has a skyrmion lattice (SL) phase. We measure the response of the TF muSR signal in that phase along with the surrounding ones, and suggest how the phases might be distinguished using the results of these measurements. Dipole field simulations support the conclusion that the muon is sensitive to the SL via the TF lineshape and, based on this interpretation, our measurements suggest that the SL is quasistatic on a timescale tau > 100 ns.
331 - Liangzi Deng 2020
A skyrmion state in a non-centrosymmetric helimagnet displays topologically protected spin textures with profound technological implications for high density information storage, ultrafast spintronics, and effective microwave devices. Usually, its equilibrium state in a bulk helimagnet occurs only over a very restricted magnetic-field--temperature phase space and often in the low temperature region near the magnetic transition temperature Tc. We have expanded and enhanced the skyrmion phase region from the small range of 55-58.5 K to 5-300 K in single-crystalline Cu2OSeO3 by pressures up to 42.1 GPa through a series of phase transitions from the cubic P2(_1)3, through orthorhombic P2(_1)2(_1)2(_1) and monoclinic P2(_1), and finally to the triclinic P1 phase, using our newly developed ultrasensitive high-pressure magnetization technique. The results are in agreement with our Ginzburg-Landau free energy analyses, showing that pressures tend to stabilize the skyrmion states and at higher temperatures. The observations also indicate that the skyrmion state can be achieved at higher temperatures in various crystal symmetries, suggesting the insensitivity of skyrmions to the underlying crystal lattices and thus the possible more ubiquitous presence of skyrmions in helimagnets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا