Do you want to publish a course? Click here

Crossing the Gould Belt in the Orion vicinity

200   0   0.0 ( 0 )
 Added by Katia Biazzo Dr
 Publication date 2012
  fields Physics
and research's language is English
 Authors K. Biazzo




Ask ChatGPT about the research

We present a study of the large-scale spatial distribution of 6482 RASS X-ray sources in approximately 5000 deg^2 in the direction of Orion. We examine the astrophysical properties of a sub-sample of ~100 optical counterparts, using optical spectroscopy. This sub-sample is used to investigate the space density of the RASS young star candidates by comparing X-ray number counts with Galactic model predictions. We characterize the observed sub-sample in terms of spectral type, lithium content, radial and rotational velocities, as well as iron abundance. A population synthesis model is then applied to analyze the stellar content of the RASS in the studied area. We find that stars associated with the Orion star-forming region do show a high lithium content. A population of late-type stars with lithium equivalent widths larger than Pleiades stars of the same spectral type (hence younger than ~70-100 Myr) is found widely spread over the studied area. Two new young stellar aggregates, namely X-ray Clump 0534+22 (age~2-10 Myr) and X-ray Clump 0430-08 (age~2-20 Myr), are also identified. The spectroscopic follow-up and comparison with Galactic model predictions reveal that the X-ray selected stellar population in the direction of Orion is characterized by three distinct components, namely the clustered, the young dispersed, and the widespread field populations. The clustered population is mainly associated with regions of recent or ongoing star formation and correlates spatially with molecular clouds. The dispersed young population follows a broad lane apparently coinciding spatially with the Gould Belt, while the widespread population consists primarily of active field stars older than 100 Myr. We expect the bi-dimensional picture emerging from this study to grow in depth as soon as the distance and the kinematics of the studied sources will become available from the future Gaia mission.



rate research

Read More

The JCMT Gould Belt Legacy Survey obtained SCUBA-2 observations of dense cores within three sub-regions of Orion B: LDN 1622, NGC 2023/2024, and NGC 2068/2071, all of which contain clusters of cores. We present an analysis of the clustering properties of these cores, including the two-point correlation function and Cartwrights Q parameter. We identify individual clusters of dense cores across all three regions using a minimal spanning tree technique, and find that in each cluster, the most massive cores tend to be centrally located. We also apply the independent M-Sigma technique and find a strong correlation between core mass and the local surface density of cores. These two lines of evidence jointly suggest that some amount of mass segregation in clusters has happened already at the dense core stage.
103 - K. Biazzo 2011
We report first results on the large-scale distribution of the ROSAT All-Sky Survey (RASS) X-ray sources in a 5000 deg^2 field centered on Orion. Our final aim is to study the properties of different widespread populations in the Orion Complex close to the Gould Belt (GB) in order to trace the star formation history in the solar neighbourhood.
We present a first look at the SCUBA-2 observations of three sub-regions of the Orion B molecular cloud: LDN 1622, NGC 2023/2024, and NGC 2068/2071, from the JCMT Gould Belt Legacy Survey. We identify 29, 564, and 322 dense cores in L1622, NGC 2023/2024, and NGC 2068/2071 respectively, using the SCUBA-2 850 micron map, and present their basic properties, including their peak fluxes, total fluxes, and sizes, and an estimate of the corresponding 450 micron peak fluxes and total fluxes, using the FellWalker source extraction algorithm. Assuming a constant temperature of 20 K, the starless dense cores have a mass function similar to that found in previous dense core analyses, with a Salpeter-like slope at the high-mass end. The majority of cores appear stable to gravitational collapse when considering only thermal pressure; indeed, most of the cores which have masses above the thermal Jeans mass are already associated with at least one protostar. At higher cloud column densities, above 1-2 x 10^23 cm^-2, most of the mass is found within dense cores, while at lower cloud column densities, below 1 x 10^23 cm^-2, this fraction drops to 10% or lower. Overall, the fraction of dense cores associated with a protostar is quite small (<8%), but becomes larger for the densest and most centrally concentrated cores. NGC 2023 / 2024 and NGC 2068/2071 appear to be on the path to forming a significant number of stars in the future, while L1622 has little additional mass in dense cores to form many new stars.
101 - J. Lane , H. Kirk , D. Johnstone 2016
The Orion A molecular cloud is one of the most well-studied nearby star-forming regions, and includes regions of both highly clustered and more dispersed star formation across its full extent. Here, we analyze dense, star-forming cores identified in the 850 {mu}m and 450 {mu}m SCUBA-2 maps from the JCMT Gould Belt Legacy Survey. We identify dense cores in a uniform manner across the Orion A cloud and analyze their clustering properties. Using two independent lines of analysis, we find evidence that clusters of dense cores tend to be mass segregated, suggesting that stellar clusters may have some amount of primordial mass segregation already imprinted in them at an early stage. We also demonstrate that the dense core clusters have a tendency to be elongated, perhaps indicating a formation mechanism linked to the filamentary structure within molecular clouds.
Using JCMT Gould Belt Survey data from CO J=3-2 isotopologues, we present a meta-analysis of the outflows and energetics of star-forming regions in several Gould Belt clouds. The majority of the regions are strongly gravitationally bound. There is evidence that molecular outflows transport large quantities of momentum and energy. Outflow energies are at least 20 per cent of the total turbulent kinetic energies in all of the regions studied and greater than the turbulent energy in half of the regions. However, we find no evidence that outflows increase levels of turbulence, and there is no correlation between the outflow and turbulent energies. Even though outflows in some regions contribute significantly to maintaining turbulence levels against dissipation, this relies on outflows efficiently coupling to bulk motions. Other mechanisms (e.g. supernovae) must be the main drivers of turbulence in most if not all of these regions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا