No Arabic abstract
We describe a web-based tool (PASCal; Principal Axis Strain Calculator) aimed at simplifying the determination of principal coefficients of thermal expansion and compressibilities from variable-temperature and variable-pressure lattice parameter data. In a series of three case studies, we use PASCal to re-analyse previously-published lattice parameter data and show that additional scientific insight is obtainable in each case. First, the two-dimensional metal-organic framework Cu-SIP-3 is found to exhibit the strongest area-negative thermal expansion (NTE) effect yet observed; second, the widely-used explosive HMX exhibits much stronger mechanical anisotropy than had previously been anticipated, including uniaxial NTE driven by thermal changes in molecular conformation; and, third, the high-pressure form of the mineral malayaite is shown to exhibit a strong negative linear compressibility (NLC) effect that arises from correlated tilting of SnO6 and SiO4 coordination polyhedra.
Synchrotron diffraction as a function of temperature and pressure, specific heat, magnetic susceptibility and small-angle neutron scattering experiments have revealed an anomalous response of MnGe. Similar but less pronounced behavior has also been observed in Mn$_{1-x}$Co$_x$Ge and Mn$_{1-x}$Fe$_x$Ge solid solutions. Spin density fluctuations and Mn spin state instability are discussed as possible candidates for the observed effects.
We present temperature dependent inelastic neutron scattering measurments, accompanied byab-initio calculations of phonon spectra and elastic properties as a function of pressure to understand anharmonicity of phonons and to study the mechanism of negative thermal expansion and negative linear compressibility behaviour of ZnAu2(CN)4. The mechanism is identified in terms of specific anharmonic modes that involve bending of the Zn(CN)4-Au- Zn(CN)4 linkage. The high-pressure phase transition at about 2 GPa is also investigated and found to be related to softening of a phonon mode at the L-point at the Brillouin zone boundary and its coupling with a zone-centre phonon and an M-point phonon in the ambient pressure phase. Although the phase transition is primarily driven by a L-point soft phonon mode, which usually leads to a second order transition with a 2 x 2 x 2 supercell, in the present case the structure is close to an elastic instability that leads to a weakly first order transition.
Thermal expansion in materials can be accurately modeled with careful anharmonic phonon calculations within density functional theory. However, because of interest in controlling thermal expansion and the time consumed evaluating thermal expansion properties of candidate materials, either theoretically or experimentally, an approach to rapidly identifying materials with desirable thermal expansion properties would be of great utility. When the ionic bonding is important in a material, we show that the fraction of crystal volume occupied by ions, (based upon ionic radii), the mean bond coordination, and the deviation of bond coordination are descriptors that correlate with the room-temperature coefficient of thermal expansion for these materials found in widely accessible databases. Correlation is greatly improved by combining these descriptors in a multi-dimensional fit. This fit reinforces the physical interpretation that open space combined with low mean coordination and a variety of local bond coordinations leads to materials with lower coefficients of thermal expansion, materials with single-valued local coordination and less open space have the highest coefficients of thermal expansion.
We report evidence of the absence of zero thermal expansion in well-characterized high-quality polycrystalline samples of YbGaGe. High-quality samples of YbGaGe were produced from high-purity starting elements and were extensively characterized using x-ray powder diffraction, differential thermal analysis, atomic emission spectroscopy, magnetization, and neutron powder diffraction at various temperatures. Our sample melts congruently at 920 C. A small amount of Yb2O3 was found in our sample, which explains the behavior of the magnetic susceptibility. These observations rule out the scenario of electronic valence driven thermal expansion in YbGaGe. Our studies indicate that the thermal expansion of YbGaGe is comparable to that of Cu.
Van der Waals heterostructures such as graphene/MoS$_2$ are promising candidates for plenty of optical or electronic applications, owing to advanced properties inherited from the constitutional atomic layers. Thermal expansion is an important phenomenon to be considered for the thermal stability of the van der Waals heterstructure as temperature commonly rises during the operation of nano devices. In the present work, the thermal expansion coefficient for the graphene/MoS$_2$ heterostructure is investigated by molecular dynamics simulations, and the effect from the unavoidable misfit strain on the thermal expansion coefficient is revealed. The misfit strain can tune the thermal expansion coefficient by a factor of six, and this effect is quite robust in sense that it is not sensitive to the size or direction of the heterostructure. An analytic formula is derived to directly relate the thermal expansion coefficient to the misfit strain of the heterostructure, which qualitatively agrees with the numerical results although the analytic formula underestimates the misfit strain effect. Further analysis discloses that the misfit strain can efficiently engineer the thermal induced ripples, which serves as the key mechanism for the misfit strain effect on the thermal expansion coefficient. These findings provide valuable information for the thermal stability of van der Waals heterostructures and shall be benefit for practical applications of van der Waals heterostructure based nano devices.