Do you want to publish a course? Click here

Shiba impurity bound states as a probe of topological superconductivity and Fermion parity changing quantum phase transitions

117   0   0.0 ( 0 )
 Added by Jay Deep Sau
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Spin-orbit coupled superconductors are potentially interesting candidates for realizing topological and potentially non-Abelian states with Majorana Fermions. We argue that time-reversal broken spin-orbit coupled superconductors generically can be characterized as having sub-gap states that are bound to localized non-magnetic impurities. Such bound states, which are referred to as Shiba states, can be detected as sharp resonances in the tunneling spectrum of the spin-orbit coupled superconductors. The Shiba state resonance can be tuned using a gate-voltage or a magnetic field from being at the edge of the gap at zero magnetic fields to crossing zero energy when the Zeeman splitting is tuned into the topological superconducting regime. The zero-crossing signifies a Fermion parity changing first order quantum phase transition, which is characterized by a Pfaffian topological invariant. These zero-crossings of the impurity level can be used to locally characterize the topological superconducting state from tunneling experiments.



rate research

Read More

There is presently a tremendous activity around the field of topological superconductivity and Majorana fermions. Among the many questions raised, it has become increasingly important to establish the topological or non-topological origin of features associated with Majorana fermions such as zero-bias peaks. Here, we compare in-gap features associated either with isolated magnetic impurities or with magnetic clusters strongly coupled to the atomically thin superconductor Pb/Si(111). We study this system by means of scanning tunneling microscopy and spectroscopy (STM/STS). We take advantage of the fact that the Pb/Si(111) monolayer can exist either in a crystal-ordered phase or in an incommensurate disordered phase to compare the observed spectroscopic features in both phases. This allows us to demonstrate that the strongly resolved in-gap states we found around the magnetic clusters in the disordered phase of Pb have a clear topological origin.
Superconductivity and topological quantum states are two frontier fields of research in modern condensed matter physics. The realization of superconductivity in topological materials is highly desired, however, superconductivity in such materials is typically limited to two- or three-dimensional materials and is far from being thoroughly investigated. In this work, we boost the electronic properties of the quasi-one-dimensional topological insulator bismuth iodide b{eta}-Bi4I4 by applying high pressure. Superconductivity is observed in b{eta}-Bi4I4 for pressures where the temperature dependence of the resistivity changes from a semiconducting-like behavior to that of a normal metal. The superconducting transition temperature Tc increases with applied pressure and reaches a maximum value of 6 K at 23 GPa, followed by a slow decrease. Our theoretical calculations suggest the presence of multiple pressure-induced topological quantum phase transitions as well as a structural-electronic instability.
Chains of magnetic atoms placed on the surface of an s-wave superconductor with large spin-orbit coupling provide a promising platform for the realization of topological superconducting states characterized by the presence of Majorana zero-energy modes. In this work we study the properties of the one-dimensional chain of Yu-Shiba-Rusinov states induced by magnetic impurities using a realistic model for the magnetic atoms that include the presence of multiple scattering channels. These channels are mixed by the spin-orbit coupling and, via the hybridization of the Yu-Shiba-Rusinov states at different sites of the chain, result in a multi-band structure for the chain. We obtain the topological phase diagram for such band structure. We identify the parameter regimes for which the different bands lead to a topological phase and show that the inclusion of higher bands can greatly enlarge the phase space for the realization of topological states.
Recent studies of mutually interacting magnetic atoms coupled to a superconductor have gained enormous interest due to the potential realization of topological superconductivity. The Kondo exchange coupling J_K of such atoms with the electrons in the superconductor has a pair-breaking effect which produces so-called Yu-Shiba-Rusinov (YSR) states within the superconducting energy gap, whose energetic positions are intimately connected with the requirements for topological superconductivity. Here, using the tip of a scanning tunneling microscope, we artificially craft a multi-impurity Kondo system coupled to a superconducting host consisting of an Fe adatom interacting with an assembly of interstitial Fe atoms on an oxygen-reconstructed Ta(100) surface and we experimentally investigate the signatures of Kondo screening and the YSR states. With the help of numerical renormalization group (NRG) calculations, we show that the observed behavior can be qualitatively reproduced by a two-impurity Kondo system whose inter-impurity antiferromagnetic interaction J is adjusted by the number of interstitial Fe atoms in the assembly. When driving the system from the regime of two decoupled Kondo singlets (small J) to that of an antiferromagnetic dimer (large J), the YSR state shows a characteristic cross-over in its energetic position and particle-hole asymmetry.
We study a chain of magnetic moments exchange coupled to a conventional three dimensional superconductor. In the normal state the chain orders into a collinear configuration, while in the superconducting phase we find that ferromagnetism is unstable to the formation of a magnetic spiral state. Beyond weak exchange coupling the spiral wavevector greatly exceeds the inverse superconducting coherence length as a result of the strong spin-spin interaction mediated through the subgap band of Yu-Shiba-Rusinov states. Moreover, the simple spin-spin exchange description breaks down as the subgap band crosses the Fermi energy, wherein the spiral phase becomes stabilized by the spontaneous opening of a $p-$wave superconducting gap within the band. This leads to the possibility of electron-driven topological superconductivity with Majorana boundary modes using magnetic atoms on superconducting surfaces.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا