Do you want to publish a course? Click here

3D Hopping Conduction in SnO2 nanobelts

279   0   0.0 ( 0 )
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

The temperature dependence of the electrical transport of a individual tin oxide nanobelt was measured, in darkness, from 400 to 5K. We found four intrinsic electrical transport mechanisms through the nanobelt. It starts with Thermal-Activation Conduction between 400 and 314K, Nearest-Neighbor Hopping conduction between 268 and 115K, and Variable Range Hopping conduction below 58K, with a crossover from the 3D-Mott to the 3D-Efros-Shklovskii regime at 16K. We claim that this sequence reveal the three-dimensional nature of the electrical transport in the SnO2 nanobelts, even they are expected to behave as one-dimensional systems.



rate research

Read More

Quantized conductance is reported in high-crystalline tin oxide (SnO2) nanobelt back-gate field-effect transistors, at low temperatures. The quantized conductance was observed as current oscillations in the drain current vs. gate voltage characteristics, and were analyzed considering the nanobelt as a quantum wire with rectangular cross-section hard-walls. The quantum confinement in the nanowires created conditions for the successive filling of the electron energy-subbands, as the gate voltage increases. When the source-drain voltage is changed the oscillations are not dislocated with respect to Vg, indicating flat-band subband energies at low temperatures. The subband separation was found to be in good agreement with the experimental observations, since the oscillations tend to disappear for T > 60K. Therefore, a novel quantum effect is reported in SnO2 nanobelts, which is expected to behave as bulk at zero electric gate fields.
The Persistent Photoconductivity (PPC) effect was studied in individual tin oxide (SnO2) nanobelts as a function of temperature, in air, helium, and vacuum atmospheres, and low temperature Photoluminescence measurements were carried out to study the optical transitions and to determine of the acceptor/donors levels and their best representation inside the band gap. Under ultraviolet (UV) illumination and at temperatures in the range of 200 to 400K we observed a fast and strong enhancement of the photoconductivity, and the maximum value of the photocurrent induced increases as the temperature or the oxygen concentration decreases. By turning off the UV illumination the induced photocurrent decays with lifetimes up to several hours. The photoconductivity and the PPC results were explained by adsorption and desorption of molecular oxygen at the surface of the SnO2 nanobelts. Based on the temperature dependence of the PPC decay an activation energy of 230 meV was found, which corresponds to the energy necessary for thermal ionization of free holes from acceptor levels to the valence band, in agreement with the photoluminescence results presented. The molecular-oxygen recombination with holes is the origin of the PPC effect in metal oxide semiconductors, so that, the PPC effect is not related to the oxygen vacancies, as commonly presented in the literature.
We study a current shot noise in a macroscopic insulator based on a two-dimensional electron system in GaAs in a variable range hopping (VRH) regime. At low temperature and in a sufficiently depleted sample a shot noise close to a full Poissonian value is measured. This suggests an observation of a finite-size effect in shot noise in the VRH conduction and demonstrates a possibility of accurate quasiparticle charge measurements in the insulating regime.
We have observed shot noise in the hopping conduction of two dimensional carriers confined in a p-type SiGe quantum well at a temperature of 4K. Moreover, shot noise is suppressed relative to its ``classical value 2eI by an amount that depends on the length of the sample and carrier density, which was controlled by a gate voltage. We have found a suppression factor to the classical value of about one half for a 2 $mu$m long sample, and of one fifth for a 5 $mu$m sample. In each case, the factor decreased slightly as the density increased toward the insulator-metal transition. We explain these results in terms of the characteristic length ($simeq 1mu$m in our case) of the inherent inhomogeneity of hopping transport.
250 - Haiying He , Ravindra Pandey , 2008
The electronic conduction of a novel, three-terminal molecular architecture, analogous to a heterojunction bipolar transistor is studied. In this architecture, two diode arms consisting of donor-acceptor molecular wires fuse through a ring, while a gate modulating wire is a pi-conjugated wire. The calculated results show the enhancement or depletion mode of a transistor by applying a gate field along the positive or negative direction. A small gate field is required to switch on the current in the proposed architecture. The changes in the electronic conduction can be attributed to the intrinsic dipolar molecular architecture in terms of the evolution of molecular wavefunctions, specifically the one associated with the terphenyl group of the modulating wire in the presence of the gate field.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا