The magneto-electric (ME) coupling on spin-wave resonances in single-crystal Cu2OSeO3 was studied by a novel technique using electron spin resonance combined with electric field modulation. An external electric field E induces a magnetic field component mu_0 H^i = gamma E along the applied magnetic field H with gamma=0.7(1) mu T/(V/mm) at 10 K. We found that ME coupling strength gamma is temperature dependent and highly anisotropic. gamma(T) nearly follows that of spin susceptibility J(T) and rapidly decreases above the Curie temperature Tc. The ratio gamma/J monotonically decreases with increasing temperature without an anomaly at Tc.