No Arabic abstract
We report on the demonstration of Doppler-free polarization spectroscopy of the D2 line of 6Li atoms. Counterintuitively, the presence of an Ar buffer gas, in a certain pressure range, causes a drastic enhancement of the polarization rotation signal. The observed dependence of the signal amplitude on the Ar buffer pressure and the pump laser power is reproduced by calculations based on simple rate equations. We performed stable laser frequency locking using a dispersion signal obtained by polarization spectroscopy for laser cooling of 6Li atoms.
We demonstrate cryogenic buffer-gas cooling of gas-phase methyltrioxorhenium (MTO). This molecule is closely related to chiral organometallic molecules where the parity-violating energy differences between enantiomers may be measurable. The molecules are produced with a rotational temperature of approximately 6~K by laser ablation of an MTO pellet inside a cryogenic helium buffer gas cell. Facilitated by the low temperature, we demonstrate absorption spectroscopy of the 10.2~$mu$m antisymmetric Re=O stretching mode of MTO with a resolution of 8~MHz and a frequency accuracy of 30~MHz. We partially resolve the hyperfine structure and measure the nuclear quadrupole coupling of the excited vibrational state.
Barium monohydride (BaH) is an attractive candidate for extending laser cooling and trapping techniques to diatomic hydrides. The apparatus and high-resolution optical spectroscopy presented here demonstrate progress toward this goal. A cryogenic buffer-gas-cooled molecular beam of BaH was constructed and characterized. Pulsed laser ablation into cryogenic helium buffer gas delivers $sim1times10^{10}$ molecules/sr/pulse in the X$^2Sigma^+$ ($v=0,N=1$) state of primary interest. More than $1times10^7$ of these molecules per pulse enter the downstream science region with forward velocities below 100 m/s and transverse temperature of 0.1 K. This molecular beam enabled high-resolution optical spectra of BaH in quantum states relevant to laser slowing and cooling. The reported measurements include hyperfine structure and magnetic $g$ factors in the X$^2Sigma^+$, B$^2Sigma^+$, and A$^2Pi_{1/2}$ states.
Aluminum monochloride (AlCl) has been proposed as an excellent candidate for laser cooling. Here we present absorption spectroscopy measurements on the $A^1Pi leftarrow X^1Sigma^+$ transition in AlCl inside a cryogenic helium buffer-gas beam cell. The high resolution absorption data enables a rigorous, quantitative comparison with our high-level ab initio calculations of the electronic and rovibronic energies, providing a comprehensive picture of the AlCl quantum structure. The combination of high resolution spectral data and theory permits the evaluation of spectroscopic constants and associated properties, like equilibrium bond length, with an order of magnitude higher precision. Based on the measured molecular equilibrium constants of the $A^1Pi$ state, we estimate a Franck-Condon factor of the $A^1Pi leftarrow X^1Sigma^+$ of 99.88%, which confirms that AlCl is amenable to laser cooling.
Lifetimes of complexes formed during helium-hydrocarbon collisions at low temperature are estimated for symmetric top hydrocarbons. The lifetimes are obtained using a density-of-states approach. In general the lifetimes are less than 10-100 ns, and are found to decrease with increasing hydrocarbon size. This suggests that clustering will not limit precision spectroscopy in helium buffer gas experiments. Lifetimes are computed for noble-gas benzene collisions and are found to be in reasonable agreement with lifetimes obtained from classical trajectories as reported by Cui {it et al}.
We have recorded fluorescence spectra of the atomic rubidium D-lines in the presence of several hundreds of bars buffer gas pressure. With additional saturation broadening a spectral linewidth comparable to the thermal energy of the atoms in the heated gas cell is achieved. An intensity-dependent blue asymmetry of the spectra is observed, which becomes increasingly pronounced when extrapolating to infinitely high light intensity. We interpret our results as evidence for the dressed (coupled atom-light) states to approach thermal equilibrium.