Do you want to publish a course? Click here

Consistent LDA+DMFT -- an unambiguous way to avoid double counting problem: NiO test

103   0   0.0 ( 0 )
 Added by Igor Nekrasov
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a consistent way of treating a double counting problem unavoidably arising within the LDA+DMFT combined approach to realistic calculations of electronic structure of strongly correlated systems. The main obstacle here is the absence of systematic (e.g. diagrammatic) way to express LDA (local density approximation) contribution to exchange correlation energy appearing in the density functional theory. It is not clear then, which part of interaction entering DMFT (dynamical mean-field theory) is already taken into account through LDA calculations. Because of that, up to now there is no accepted unique expression for the double counting correction in LDA+DMFT. To avoid this problem we propose here the consistent LDA+DMFT approach, where LDA exchange correlation contribution is explicitly excluded for correlated states (bands) during self-consistent band structure calculations. What is left out of Coulomb interaction for those strongly correlated states (bands) is its non-local part, which is not included in DMFT, and the local Hartree like contribution. Then the double counting correction is uniquely reduced to the local Hartree contribution. Correlations for strongly correlated states are then directly accounted for via the standard DMFT. We further test the consistent LDA+DMFT scheme and compare it with conventional LDA+DMFT calculating the electronic structure of NiO. Opposite to the conventional LDA+DMFT our consistent LDA+DMFT approach unambiguously produces the insulating band structure in agreement with experiments.



rate research

Read More

87 - X. Ren , I. Leonov , G. Keller 2006
The electronic spectrum, energy gap and local magnetic moment of paramagnetic NiO are computed by using the local density approximation plus dynamical mean-field theory (LDA+DMFT). To this end the noninteracting Hamiltonian obtained within the local density approximation (LDA) is expressed in Wannier functions basis, with only the five anti-bonding bands with mainly Ni 3d character taken into account. Complementing it by local Coulomb interactions one arrives at a material-specific many-body Hamiltonian which is solved by DMFT together with quantum Monte-Carlo (QMC) simulations. The large insulating gap in NiO is found to be a result of the strong electronic correlations in the paramagnetic state. In the vicinity of the gap region, the shape of the electronic spectrum calculated in this way is in good agreement with the experimental x-ray-photoemission and bremsstrahlung-isochromat-spectroscopy results of Sawatzky and Allen. The value of the local magnetic moment computed in the paramagnetic phase (PM) agrees well with that measured in the antiferromagnetic (AFM) phase. Our results for the electronic spectrum and the local magnetic moment in the PM phase are in accordance with the experimental finding that AFM long-range order has no significant influence on the electronic structure of NiO.
The new challenges posed by the need of finding strong rare-earth free magnets demand methods that can predict magnetization and magnetocrystalline anisotropy energy (MAE). We argue that correlated electron effects, which are normally underestimated in band structure calculations, play a crucial role in the development of the orbital component of the magnetic moments. Because magnetic anisotropy arises from this orbital component, the ability to include correlation effects has profound consequences on our predictive power of the MAE of strong magnets. Here we show that incorporating the local effects of electronic correlations with dynamical mean-field theory provides reliable estimates of the orbital moment, the mass enhancement and the MAE of YCo5.
We discuss the recently proposed LDA+DMFT approach providing consistent parameter free treatment of the so called double counting problem arising within the LDA+DMFT hybrid computational method for realistic strongly correlated materials. In this approach the local exchange-correlation portion of electron-electron interaction is excluded from self consistent LDA calculations for strongly correlated electronic shells, e.g. d-states of transition metal compounds. Then the corresponding double counting term in LDA+DMFT Hamiltonian is consistently set in the local Hartree (fully localized limit - FLL) form of the Hubbard model interaction term. We present the results of extensive LDA+DMFT calculations of densities of states, spectral densities and optical conductivity for most typical representatives of two wide classes of strongly correlated systems in paramagnetic phase: charge transfer insulators (MnO, CoO and NiO) and strongly correlated metals (SrVO3 and Sr2RuO4). It is shown that for NiO and CoO systems LDA+DMFT qualitatively improves the conventional LDA+DMFT results with FLL type of double counting, where CoO and NiO were obtained to be metals. We also include in our calculations transition metal 4s-states located near the Fermi level missed in previous LDA+DMFT studies of these monooxides. General agreement with optical and X-ray experiments is obtained. For strongly correlated metals LDA$^prime$+DMFT results agree well with earlier LDA+DMFT calculations and existing experiments. However, in general LDA+DMFT results give better quantitative agreement with experimental data for band gap sizes and oxygen states positions, as compared to the conventional LDA+DMFT.
We present an ab initio quantum theory of the finite temperature magnetism of iron and nickel. A recently developed technique which combines dynamical mean-field theory with realistic electronic structure methods, successfully describes the many-body features of the one electron spectra and the observed magnetic moments below and above the Curie temperature.
183 - Eva Pavarini 2014
The LDA+DMFT method is a very powerful tool for gaining insight into the physics of strongly correlated materials. It combines traditional ab-initio density-functional techniques with the dynamical mean-field theory. The core aspects of the method are (i) building material-specific Hubbard-like many-body models and (ii) solving them in the dynamical mean-field approximation. Step (i) requires the construction of a localized one-electron basis, typically a set of Wannier functions. It also involves a number of approximations, such as the choice of the degrees of freedom for which many-body effects are explicitly taken into account, the scheme to account for screening effects, or the form of the double-counting correction. Step (ii) requires the dynamical mean-field solution of multi-orbital generalized Hubbard models. Here central is the quantum-impurity solver, which is also the computationally most demanding part of the full LDA+DMFT approach. In this chapter I will introduce the core aspects of the LDA+DMFT method and present a prototypical application.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا