Automated Generation of Cross-Domain Analogies via Evolutionary Computation


Abstract in English

Analogy plays an important role in creativity, and is extensively used in science as well as art. In this paper we introduce a technique for the automated generation of cross-domain analogies based on a novel evolutionary algorithm (EA). Unlike existing work in computational analogy-making restricted to creating analogies between two given cases, our approach, for a given case, is capable of creating an analogy along with the novel analogous case itself. Our algorithm is based on the concept of memes, which are units of culture, or knowledge, undergoing variation and selection under a fitness measure, and represents evolving pieces of knowledge as semantic networks. Using a fitness function based on Gentners structure mapping theory of analogies, we demonstrate the feasibility of spontaneously generating semantic networks that are analogous to a given base network.

Download