We consider long-range self-avoiding walk, percolation and the Ising model on $mathbb{Z}^d$ that are defined by power-law decaying pair potentials of the form $D(x)asymp|x|^{-d-alpha}$ with $alpha>0$. The upper-critical dimension $d_{mathrm{c}}$ is $2(alphawedge2)$ for self-avoiding walk and the Ising model, and $3(alphawedge2)$ for percolation. Let $alpha e2$ and assume certain heat-kernel bounds on the $n$-step distribution of the underlying random walk. We prove that, for $d>d_{mathrm{c}}$ (and the spread-out parameter sufficiently large), the critical two-point function $G_{p_{mathrm{c}}}(x)$ for each model is asymptotically $C|x|^{alphawedge2-d}$, where the constant $Cin(0,infty)$ is expressed in terms of the model-dependent lace-expansion coefficients and exhibits crossover between $alpha<2$ and $alpha>2$. We also provide a class of random walks that satisfy those heat-kernel bounds.