We predict a mechanism to generate a pure spin current in a two-dimensional topological insulator. As the magnetic impurities exist on one of edges of the two-dimensional topological insulator, a gap is opened in the corresponding gapless edge states but another pair of gapless edge states with opposite spin are still protected by the time-reversal symmetry. So the conductance plateaus with the half-integer values $e^2/h$ can be obtained in the gap induced by magnetic impurities, which means that the pure spin current can be induced in the sample. We also find that the pure spin current is insensitive to weak disorder. The mechanism to generate pure spin currents is generalized for two-dimensional topological insulators.
We study nonlocal resistance in an H-shaped two-dimensional HgTe/CdTe quantum well consist of injector and detector, both of which can be tuned in the quantum spin Hall or metallic spin Hall regime. Because of strong spin-orbit interaction, there always exist spin Hall effect and the nonlocal resistance in HgTe/CdTe quantum well. We find that when both detector and injector are in the quantum spin Hall regime, the nonlocal resistance is quantized at $0.25frac{h}{e^2}$, which is robust against weak disorder scattering and small magnetic field. While beyond this regime, the nonlocal resistance decreases rapidly and will be strongly suppressed by disorder and magnetic field. In the presence of strong magnetic field, the quantum spin Hall regime will be switched into the quantum Hall regime and the nonlocal resistance will disappear. The nonlocal signal and its various manifestation in different hybrid regimes originate from the special band structure of HgTe/CdTe quantum well, and can be considered as the fingerprint of the helical quantum spin Hall edge states in two-dimensional topological insulator.
Topological superconductivity is an exotic state of matter that supports Majorana zero-modes, which are surface modes in 3D, edge modes in 2D or localized end states in 1D. In the case of complete localization these Majorana modes obey non-Abelian exchange statistics making them interesting building blocks for topological quantum computing. Here we report superconductivity induced into the edge modes of semiconducting InAs/GaSb quantum wells, a two-dimensional topological insulator. Using superconducting quantum interference, we demonstrate gate-tuning between edge-dominated and bulk-dominated regimes of superconducting transport. The edge-dominated regime arises only under conditions of high-bulk resistivity, which we associate with the 2D topological phase. These experiments establish InAs/GaSb as a robust platform for further confinement of Majoranas into localized states enabling future investigations of non-Abelian statistics.
Excitation of magnetization dynamics by pure spin currents has been recently recognized as an enabling mechanism for spintronics and magnonics, which allows implementation of spin-torque devices based on low-damping insulating magnetic materials. Here we report the first spatially-resolved study of the dynamic modes excited by pure spin current in nanometer-thick microscopic insulating Yttrium Iron Garnet disks. We show that these modes exhibit nonlinear self-broadening preventing the formation of the self-localized magnetic bullet, which plays a crucial role in the stabilization of the single-mode magnetization oscillations in all-metallic systems. This peculiarity associated with the efficient nonlinear mode coupling in low-damping materials can be among the main factors governing the interaction of pure spin currents with the dynamic magnetization in high-quality magnetic insulators.
A second-order topological insulator (SOTI) in $d$ spatial dimensions features topologically protected gapless states at its $(d-2)$-dimensional boundary at the intersection of two crystal faces, but is gapped otherwise. As a novel topological state, it has been attracting great interest, but it remains a challenge to identify a realistic SOTI material in two dimensions (2D). Here, based on combined first-principles calculations and theoretical analysis, we reveal the already experimentally synthesized 2D material graphdiyne as the first realistic example of a 2D SOTI, with topologically protected 0D corner states. The role of crystalline symmetry, the robustness against symmetry-breaking, and the possible experimental characterization are discussed. Our results uncover a hidden topological character of graphdiyne and promote it as a concrete material platform for exploring the intriguing physics of higher-order topological phases.
The effect of quantizing magnetic field on the electron transport is investigated in a two dimensional topological insulator (2D TI) based on a 8 nm (013) HgTe quantum well (QW). The local resistance behavior is indicative of a metal-insulator transition at $Bapprox 6$ T. On the whole the experimental data agrees with the theory according to which the helical edge states transport in a 2D TI persists from zero up to a critical magnetic field $B_c$ after which a gap opens up in the 2D TI spectrum.