Do you want to publish a course? Click here

Photostriction in BiFeO3: wavelength dependence

375   0   0.0 ( 0 )
 Added by Bohdan Kundys
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

In electrically polar solids optomechanical effects result from the combination of two main processes, electric field-induced strain and photon-induced voltages. Whereas the former depends on the electrostrictive ability of the sample to convert electric energy into mechanical energy, the latter is caused by the capacity of photons with appropriate energy to generate charges and, therefore, can depend on wavelength.We report here on mechanical deformation of BiFeO3 and its response time to discrete wavelengths of incident light ranging from 365 to 940 nm. The mechanical response of BiFeO3 is found to have two maxima in near-UV and green spectral wavelength regions.



rate research

Read More

Recent studies have reported the existence of an epitaxially-stabilized tetragonal-like (T-like) monoclinic phase in BiFeO3 thin-films with high levels of compressive strain. While their structural and ferroelectric properties are different than those of rhombohedral-like (R-like) films with lower levels of strain, little information exists on magnetic properties. Here, we report a detailed neutron scattering study of a nearly phase-pure film of T-like BiFeO3. By tracking the temperature dependence and relative intensity of several superstructure peaks in the reciprocal lattice cell, we confirm antiferromagnetism with largely G-type character and TN = 324 K, significantly below a structural phase transition at 375 K, contrary to previous reports. Evidence for a second transition, possibly a minority magnetic phase with C-type character is also reported with TN = 260 K. The co-existence of the two magnetic phases in T-like BiFeO3 and the difference in ordering temperatures between R-like and T-like systems is explained through simple Fe-O-Fe bond distance considerations.
In multiferroic BiFeO3 thin films grown on highly mismatched LaAlO3 substrates, we reveal the coexistence of two differently distorted polymorphs that leads to striking features in the temperature dependence of the structural and multiferroic properties. Notably, the highly distorted phase quasi-concomitantly presents an abrupt structural change, transforms from a hard to a soft ferroelectric and transitions from antiferromagnetic to paramagnetic at 360+/-20 K. These coupled ferroic transitions just above room temperature hold promises of giant piezoelectric, magnetoelectric and piezomagnetic responses, with potential in many applications fields.
We report a study on the thermodynamic stability and structure analysis of the epitaxial BiFeO3 (BFO) thin films grown on YAlO3 (YAO) substrate. First we observe a phase transition of MC-MA-T occurs in thin sample (<60 nm) with an utter tetragonal-like phase (denoted as MII here) with a large c/a ratio (~1.23). Specifically, MII phase transition process refers to the structural evolution from a monoclinic MC structure at room temperature to a monoclinic MA at higher temperature (150oC) and eventually to a presence of nearly tetragonal structure above 275oC. This phase transition is further confirmed by the piezoforce microscopy measurement, which shows the rotation of polarization axis during the phase transition. A systematic study on structural evolution with thickness to elucidate the impact of strain state is performed. We note that the YAO substrate can serve as a felicitous base for growing T-like BFO because this phase stably exists in very thick film. Thick BFO films grown on YAO substrate exhibit a typical morphotropic-phase-boundary-like feature with coexisting multiple phases (MII, MI, and R) and a periodic stripe-like topography. A discrepancy of arrayed stripe morphology in different direction on YAO substrate due to the anisotropic strain suggests a possibility to tune the MPB-like region. Our study provides more insights to understand the strain mediated phase co-existence in multiferroic BFO system.
We demonstrate a direct correlation between the domain structure of multiferroic BiFeO3 thin films and exchange bias of Co0.9Fe0.1/BiFeO3 heterostructures. Two distinct types of interactions, an enhancement of the coercive field (exchange enhancement) and an enhancement of the coercive field combined with large shifts of the hysteresis loop (exchange bias), have been observed in these heterostructures, which depend directly on the type and crystallography of the nanoscale (2 nm) domain walls in the BiFeO3 film. We show that the magnitude of the exchange bias interaction scales with the length of 109 degree ferroelectric domain walls in the BiFeO3 thin films which have been probed via piezoresponse force microscopy and x-ray magnetic circular dichroism.
203 - H. Bea , M. Bibes , F. Ott 2007
We have combined neutron scattering and piezoresponse force microscopy to study the relation between the exchange bias observed in CoFeB/BiFeO3 heterostructures and the multiferroic domain structure of the BiFeO3 films. We show that the exchange field scales with the inverse of the ferroelectric and antiferromagnetic domain size, as expected from Malozemoffs model of exchange bias extended to multiferroics. Accordingly, polarized neutron reflectometry reveals the presence of uncompensated spins in the BiFeO3 film at the interface with the CoFeB. In view of these results we discuss possible strategies to switch the magnetization of a ferromagnet by an electric field using BiFeO3.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا