Do you want to publish a course? Click here

Global well-posedness of a conservative relaxed cross diffusion system

300   0   0.0 ( 0 )
 Added by Thomas Lepoutre
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

We prove global existence in time of solutions to relaxed conservative cross diffusion systems governed by nonlinear operators of the form $u_ito partial_tu_i-Delta(a_i(tilde{u})u_i)$ where the $u_i, i=1,...,I$ represent $I$ density-functions, $tilde{u}$ is a spatially regularized form of $(u_1,...,u_I)$ and the nonlinearities $a_i$ are merely assumed to be continuous and bounded from below. Existence of global weak solutions is obtained in any space dimension. Solutions are proved to be regular and unique when the $a_i$ are locally Lipschitz continuous.



rate research

Read More

The aim of this paper is to establish the $H^1$ global well-posedness for Kirchhoff systems. The new approach to the construction of solutions is based on the asymptotic integrations for strictly hyperbolic systems with time-dependent coefficients. These integrations play an important role to setting the subsequent fixed point argument. The existence of solutions for less regular data is discussed, and several examples and applications are presented.
In this paper we show global well-posedness near vacuum for the binary-ternary Boltzmann equation. The binary-ternary Boltzmann equation provides a correction term to the classical Boltzmann equation, taking into account both binary and ternary interactions of particles, and may serve as a more accurate description model for denser gases in non-equilibrium. Well-posedness of the classical Boltzmann equation and, independently, the purely ternary Boltzmann equation follow as special cases. To prove global well-posedness, we use a Kaniel-Shinbrot iteration and related work to approximate the solution of the nonlinear equation by monotone sequences of supersolutions and subsolutions. This analysis required establishing new convolution type estimates to control the contribution of the ternary collisional operator to the model. We show that the ternary operator allows consideration of softer potentials than the one binary operator, consequently our solution to the ternary correction of the Boltzmann equation preserves all the properties of the binary interactions solution. These results are novel for collisional operators of monoatomic gases with either hard or soft potentials that model both binary and ternary interactions.
The two-dimensional Zakharov system is shown to have a unique global solution for data without finite energy if the L^2 - norm of the Schrodinger part is small enough. The proof uses a refined I-method originally initiated by Colliander, Keel, Staffilani, Takaoka and Tao. A polynomial growth bound for the solution is also given.
A reaction-diffusion equation with power nonlinearity formulated either on the half-line or on the finite interval with nonzero boundary conditions is shown to be locally well-posed in the sense of Hadamard for data in Sobolev spaces. The result is established via a contraction mapping argument, taking advantage of a novel approach that utilizes the formula produced by the unified transform method of Fokas for the forced linear heat equation to obtain linear estimates analogous to those previously derived for the nonlinear Schrodinger, Korteweg-de Vries and good Boussinesq equations. Thus, the present work extends the recently introduced unified transform method approach to well-posedness from dispersive equations to diffusive ones.
144 - Yang Li 2021
In this paper, we consider the three-dimensional full compressible viscous non-resistive MHD system. Global well-posedness is proved for an initial-boundary value problem around a strong background magnetic field. It is also shown that the unique solution converges to the steady state at an almost exponential rate as time tends to infinity. The proof is based on the celebrated two-tier energy method, due to Guo and Tice [emph{Arch. Ration. Mech. Anal.}, 207 (2013), pp. 459--531; emph{Anal. PDE.}, 6 (2013), pp. 287--369], reformulated in Lagrangian coordinates. The obtained result may be viewed as an extension of Tan and Wang [emph{SIAM J. Math. Anal.}, 50 (2018), pp. 1432--1470] to the context of heat-conductive fluids. This in particular verifies the stabilization effects of vertical magnetic field in the full compressible non-resistive fluids.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا