The Spectroscopic Diversity of Type Ia Supernovae


Abstract in English

We present 2603 spectra of 462 nearby Type Ia supernovae (SN Ia) obtained during 1993-2008 through the Center for Astrophysics Supernova Program. Most of the spectra were obtained with the FAST spectrograph at the FLWO 1.5m telescope and reduced in a consistent manner, making data set well suited for studies of SN Ia spectroscopic diversity. We study the spectroscopic and photometric properties of SN Ia as a function of spectroscopic class using the classification schemes of Branch et al. and Wang et al. The width-luminosity relation appears to be steeper for SN Ia with broader lines. Based on the evolution of the characteristic Si II 6355 line, we propose improved methods for measuring velocity gradients, revealing a larger range than previously suspected, from ~0 to ~400 km/s/day considering the instantaneous velocity decline rate at maximum light. We find a weaker and less significant correlation between Si II velocity and intrinsic B-V color at maximum light than reported by Foley et al., owing to a more comprehensive treatment of uncertainties and host galaxy dust. We study the extent of nuclear burning and report new detections of C II 6580 in 23 early-time spectra. The frequency of C II detections is not higher in SN Ia with bluer colors or narrower light curves, in conflict with the recent results of Thomas et al. Based on nebular spectra of 27 SN Ia, we find no relation between the FWHM of the iron emission feature at ~4700 A and Dm15(B) after removing the two low-luminosity SN 1986G and SN 1991bg, suggesting that the peak luminosity is not strongly dependent on the kinetic energy of the explosion for most SN Ia. Finally, we confirm the correlation of velocity shifts in some nebular lines with the intrinsic B-V color of SN Ia at maximum light, although several outliers suggest a possible non-monotonic behavior for the largest blueshifts.

Download