Generalized Wannier functions: a comparison of molecular electric dipole polarizabilities


Abstract in English

Localized Wannier functions provide an efficient and intuitive means by which to compute dielectric properties from first principles. They are most commonly constructed in a post-processing step, following total-energy minimization. Nonorthogonal generalized Wannier functions (NGWFs) [Skylaris et al., Phys. Rev. B 66, 035119 11 (2002); Skylaris et al., J. Chem. Phys. 122, 084119 (2005)] may also be optimized in situ, in the process of solving for the ground-state density. We explore the relationship between NGWFs and orthonormal, maximally localized Wannier functions (MLWFs) [Marzari and Vanderbilt, Phys. Rev. B 56, 12847 (1997); Souza, Marzari, and Vanderbilt, ibid. 65, 035109 (2001)], demonstrating that NGWFs may be used to compute electric dipole polarizabilities efficiently, with no necessity for post-processing optimization, and with an accuracy comparable to MLWFs.

Download