No Arabic abstract
Absolute cross sections for the K-shell photoionization of C-like nitrogen ions were measured by employing the ion-photon merged-beam technique at the SOLEIL synchrotron radiation facility in Saint-Aubin, France. High-resolution spectroscopy with E/$Delta$E $approx$ 7,000 was achieved with the photon energy from 388 to 430 eV scanned with a band pass of 300 meV, and the 399.4 to 402 eV range with 60 meV. Experimental results are compared with theoretical predictions made from the multi-configuration Dirac-Fock (MCDF) and R-matrix methods. The interplay between experiment and theory enabled the identification and characterization of the strong 1s $rightarrow$ 2p resonances observed in the spectra.
We present R-matrix calculations of photoabsorption and photoionization cross sections across the K edge of the Li-like to Ca-like ions stages of Ni. Level-resolved, Breit-Pauli calculations were performed for the Li-like to Na-like stages. Term-resolved calculations, which include the mass-velocity and Darwin relativistic corrections, were performed for the Mg-like to Ca-like ion stages. This data set is extended up to Fe-like Ni using the distorted wave approximation as implemented by AUTOSTRUCTURE. The R-matrix calculations include the effects of radiative and Auger dampings by means of an optical potential. The damping processes affect the absorption resonances converging to the K thresholds causing them to display symmetric profiles of constant width that smear the otherwise sharp edge at the K-shell photoionization threshold. These data are important for the modeling of features found in photoionized plasmas.
Absolute cross sections for m-fold photoionization (m=1,...,6) of Fe+ by a single photon were measured employing the photon-ion merged-beams setup PIPE at the PETRA III synchrotron light source, operated by DESY in Hamburg, Germany. Photon energies were in the range 680-920 eV which covers the photoionization resonances associated with 2p and 2s excitation to higher atomic shells as well as the thresholds for 2p and 2s ionization. The corresponding resonance positions were measured with an uncertainty of +- 0.2 eV. The cross section for Fe+ photoabsorption is derived as the sum of the individually measured cross-sections for m-fold ionization. Calculations of the Fe+ absorption cross sections have been carried out using two different theoretical approaches, Hartree-Fock including relativistic extensions and fully relativistic Multi-Configuration Dirac Fock. Apart from overall energy shifts of up to about 3 eV, the theoretical cross sections are in good agreement with each other and with the experimental results. In addition, the complex deexcitation cascades after the creation of inner-shell holes in the Fe+ ion have been tracked on the atomic fine-structure level. The corresponding theoretical results for the product charge-state distributions are in much better agreement with the experimental data than previously published configuration-average results. The present experimental and theoretical results are valuable for opacity calculations and are expected to pave the way to a more accurate determination of the iron abundance in the interstellar medium.
Photoionization of Kr$^+$ ions was studied in the energy range from 23.3 eV to 39.0 eV at a photon energy resolution of 7.5 meV. Absolute measurements were performed by merging beams of Kr$^+$ ions and of monochromatized synchrotron undulator radiation. Photoionization (PI) of this Br-like ion is characterized by multiple Rydberg series of autoionizing resonances superimposed on a direct photoionization continuum. Resonance features observed in the experimental spectra are spectroscopically assigned and their energies and quantum defects tabulated. The high-resolution cross-section measurements are benchmarked against state-of-the-art theoretical cross-section calculations from the Dirac-Coulomb R-matrix method.
Innershell ionization of a $1s$ electron by either photons or electrons is important for X-ray photoionized objects such as active galactic nuclei and electron-ionized sources such as supernova remnants. Modeling and interpreting observations of such objects requires accurate predictions for the charge state distribution (CSD) which results as the $1s$-hole system stabilizes. Due to the complexity of the complete stabilization process, few modern calculations exist and the community currently relies on 40-year-old atomic data. Here, we present a combined experimental and theoretical study for innershell photoionization of neutral atomic nitrogen for photon energies of $403-475$~eV. Results are reported for the total ion yield cross section, for the branching ratios for formation of N$^+$, N$^{2+}$, and N$^{3+}$, and for the average charge state. We find significant differences when comparing to the data currently available to the astrophysics community. For example, while the branching ratio to N$^{2+}$ is somewhat reduced, that for N$^+$ is greatly increased, and that to N$^{3+}$, which was predicted not to be zero, grows to $approx 10%$ at the higher photon energies studied. This work demonstrates some of the shortcomings in the theoretical CSD data base for innershell ionization and points the way for the improvements needed to more reliably model the role of innershell ionization of cosmic plasmas.
Photoionization fronts play a dominant role in many astrophysical environments, but remain difficult to achieve in a laboratory experiment. Recent papers have suggested that experiments using a nitrogen medium held at ten atmospheres of pressure that is irradiated by a source with a radiation temperature of T$_{rm R}sim$ 100 eV can produce viable photoionization fronts. We present a suite of one-dimensional numerical simulations using the helios multi-material radiation hydrodynamics code that models these conditions and the formation of a photoionization front. We study the effects of varying the atomic kinetics and radiative transfer model on the hydrodynamics and ionization state of the nitrogen gas, finding that more sophisticated physics, in particular a multi-angle long characteristic radiative transfer model and a collisional-radiative atomics model, dramatically changes the atomic kinetic evolution of the gas. A photoionization front is identified by computing the ratios between the photoionization rate, the electron impact ionization rate, and the total recombination rate. We find that due to the increased electron temperatures found using more advanced physics that photoionization fronts are likely to form in our nominal model. We report results of several parameter studies. In one of these, the nitrogen pressure is fixed at ten atmospheres and varies the source radiation temperature while another fixes the temperature at 100 eV and varied the nitrogen pressure. Lower nitrogen pressures increase the likelihood of generating a photoionization front while varying the peak source temperature has little effect.