Do you want to publish a course? Click here

Observation of Coulomb-Assisted Dipole-Forbidden Intraexciton Transitions in Semiconductors

247   0   0.0 ( 0 )
 Added by Junichiro Kono
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use terahertz pulses to induce resonant transitions between the eigenstates of optically generated exciton populations in a high-quality semiconductor quantum-well sample. Monitoring the excitonic photoluminescence, we observe transient quenching of the $1s$ exciton emission, which we attribute to the terahertz-induced $1s$-to-$2p$ excitation. Simultaneously, a pronounced enhancement of the $2s$-exciton emission is observed, despite the $1s$-to-$2s$ transition being dipole forbidden. A microscopic many-body theory explains the experimental observations as a Coulomb-scattering mixing of the 2$s$ and 2$p$ states, yielding an effective terahertz transition between the 1$s$ and 2$s$ populations.



rate research

Read More

87 - F. Lengers , R. Rosati , T. Kuhn 2019
When the excitation of carriers in real space is focused down to the nanometer scale, the carrier system can no longer be viewed as homogeneous and ultrafast transport of the excited carrier wave packets occurs. In state-of-the-art semiconductor structures like low-dimensional heterostructures or monolayers of transition metal dichalcogenides, the Coulomb interaction between excited carriers becomes stronger due to confinement or reduced screening. This demands a fundamental understanding of strongly interacting electrons and holes and the influence of Coulomb correlations. To study the corresponding particle dynamics in a controlled way we consider a system of up to two electron-hole pairs exactly within a wave function approach. We show that the excited wave packets contain a non-trivial mixture of free particle and excitonic states. We further scrutinize the influence of Coulomb interaction on the wave packet dynamics revealing its different role for below and above band-gap excitation.
The ability to control the size of the electronic bandgap is an integral part of solid-state technology. Atomically-thin two-dimensional crystals offer a new approach for tuning the energies of the electronic states based on the interplay between the environmental sensitivity and unusual strength of the Coulomb interaction in these materials. By engineering the surrounding dielectric environment, we are able to tune the electronic bandgap in monolayers of WS2 and WSe2 by hundreds of meV. We exploit this behavior to present an in-plane dielectric heterostructure with a spatially dependent bandgap, illustrating the feasibility of our approach for the creation of lateral junctions with nanoscale resolution. This successful demonstration of bandgap engineering based on the non-invasive modification of the Coulomb interaction should enable the design of a new class of atomically thin devices to advance the limits of size and functionality for solid-state technologies.
In order to better understand the origin of multiple quantum transitions observed in superparamagnetic nanoparticles, electron magnetic resonance (EMR) studies have been performed on iron oxide nanoparticles assembled inside the anodic alumina membrane. The positions of both the main resonance and forbidden (double-quantum, 2Q) transitions observed at the half-field demonstrate the characteristic angular dependence with the line shifts proportional to 3cos2q-1, where q is the angle between the channel axis and external magnetic field B. This result can be attributed to the interparticle dipole-dipole interactions within elongated aggregates inside the channels. The angular dependence of the 2Q intensity is found to be proportional to sin2qcos2q, that is consistent with the predictions of quantum-mechanical calculations with the account for the mixing of states by non-secular inter-particle dipole-dipole interactions. Good agreement is demonstrated between different kinds of measurements (magnetization curves, line shifts and 2Q intensity), evidencing applicability of the quantum approach to the magnetization dynamics of superparamagnetic objects.
81 - D. Brinkmann 2000
A two-band model of a disordered semiconductor is used to analyze dynamical interaction induced weakening of localization in a system that is accessible to experimental verification. The results show a dependence on the sign of the two-particle interaction and on the optical excitation energy of the Coulomb-correlated electron-hole pair.
The strength of radiative transitions in atoms is governed by selection rules. Spectroscopic studies of allowed transitions in hydrogen and helium provided crucial evidence for the Bohrs model of an atom. Forbidden transitions, which are actually allowed by higher-order processes or other mechanisms, indicate how well the quantum numbers describe the system. We apply these tests to the quantum states in semiconductor quantum dots (QDs), which are regarded as artificial atoms. Electrons in a QD occupy quantized states in the same manner as electrons in real atoms. However, unlike real atoms, the confinement potential of the QD is anisotropic, and the electrons can easily couple with phonons of the material. Understanding the selection rules for such QDs is an important issue for the manipulation of quantum states. Here we investigate allowed and forbidden transitions for phonon emission in one- and two-electron QDs (artificial hydrogen and helium atoms) by electrical pump-and-probe experiments, and find that the total spin is an excellent quantum number in artificial atoms. This is attractive for potential applications to spin based information storage.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا