Strangelets under strong magnetic fields


Abstract in English

In this thesis is studied three of the fundamental properties of clusters of matter made of quarks u, d and s called strangelets: the energy per baryon, the radius and the electric charge, all in the presence of intense magnetic fields and finite temperature. Two cases will take our attention: unpaired phase strangelets, where there is no restriction to the number of flavors of quarks, and a particular case of the color superconducting phase, where exists a restriction to the quark numbers and an additional energy gap. We study the stability of strangelets, measured by the energy per baryon, to compare later with that of the 56Fe : the most stable isotope known in nature. We employ the Liquid Drop formalism of the Bag Model MIT to describe the interaction between quarks. We conclude that the field effects tend to decrease the energy per baryon of strangelets and temperature produces the opposite effect. It is also shown that strangelets in the color superconducting phase are more stable than those in the unpaired phase for an energy gap of about 100MeV. The radius of strangelets shows an analogous behavior with the baryon number, as that of the nuclei, and shows small variations with the magnetic field and temperature. It is obtained that the presence of magnetic fields modify the values of the electric charge regarding the non-magnetized case, being these higher (lower) for strangelets in the unpaired phase (superconducting).

Download