Do scale-invariant fluctuations imply the breaking of de Sitter invariance?


Abstract in English

The quantization of the massless minimally coupled (mmc) scalar field in de Sitter spacetime is known to be a non-trivial problem due to the appearance of strong infrared (IR) effects. In particular, the scale-invariance of the CMB power-spectrum - certainly one of the most successful predictions of modern cosmology - is widely believed to be inconsistent with a de Sitter invariant mmc two-point function. Using a Cesaro-summability technique to properly define an otherwise divergent Fourier transform, we show in this Letter that de Sitter symmetry breaking is emph{not} a necessary consequence of the scale-invariant fluctuation spectrum. We also generalize our result to the tachyonic scalar fields, i.e the discrete series of representations of the de Sitter group, that suffer from similar strong IR effects.

Download