No Arabic abstract
Evidence of strong coupling of quasiparticle excitations with gamma-vibration is shown to occur in transitional nuclei. High-spin band structures in [166,168,170,172]Er are studied by employing the recently developed multi-quasiparticle triaxial projected shell model approach. It is demonstrated that a low-lying K=3 band observed in these nuclei, the nature of which has remained unresolved, originates from the angular-momentum projection of triaxially deformed two-quasiparticle (qp) configurations. Further, it is predicted that the structure of this band depends critically on the shell filling: in [166]Er the lowest K=3 2-qp band is formed from proton configuration, in [168]Er the K=3 neutron and proton 2-qp bands are almost degenerate, and for [170]Er and [172]Er the neutron K=3 2-qp band becomes favored and can cross the gamma-vibrational band at high rotational frequencies. We consider that these are few examples in even-even nuclei, where the three basic modes of rotational, vibrational, and quasi-particle excitations co-exist close to the yrast line.
In addition to shape oscillations, low-energy excitation spectra of deformed nuclei are also influenced by pairing vibrations. The simultaneous description of these collective modes and their coupling has been a long-standing problem in nuclear structure theory. Here we address the problem in terms of self-consistent mean-field calculations of collective deformation energy surfaces, and the framework of the interacting boson approximation. In addition to quadrupole shape vibrations and rotations, the explicit coupling to pairing vibrations is taken into account by a boson-number non-conserving Hamiltonian, specified by a choice of a universal density functional and pairing interaction. An illustrative calculation for $^{128}$Xe and $^{130}$Xe shows the importance of dynamical pairing degrees of freedom, especially for structures built on low-energy $0^+$ excited states, in $gamma$-soft and triaxial nuclei.
Excited band structures recently observed in $^{156}$Dy are investigated using the microscopic triaxial projected shell model (TPSM) approach and the quasiparticle random phase approximation (QRPA) based on the rotating mean-field. It is demonstrated that new observed excited bands, tracking the ground-state band, are the $gamma$-bands based on the excited two-quasineutron configurations as conjectured in the experimental work.
We present a new analysis of the pairing vibrations around 56Ni, with emphasis on odd-odd nuclei. This analysis of the experimental excitation energies is based on the subtraction of average properties that include the full symmetry energy together with volume, surface and Coulomb terms. The results clearly indicate a collective behavior of the isovector pairing vibrations and do not support any appreciable collectivity in the isoscalar channel.
In this letter, we show that the non-linearitites of large amplitude motions in atomic nuclei induce giant quadrupole and monopole vibrations. As a consequence, the main source of anharmonicity is the coupling with configurations including one of these two giant resonances on top of any state. Two-phonon energies are often lowered by one or two MeV because of the large matrix elements with such three phonon configurations. These effects are studied in two nuclei, 40Ca and 208Pb.
The rotational bands in the neutron-rich nuclei $^{153-157}$Pm are investigated by a particle-number conserving method. The kinematic moments of inertia for the 1-quasiparticle bands in odd-$A$ Pm isotopes $^{153, 155, 157}$Pm are reproduced quite well by the present calculation. By comparison between the experimental and calculated moments of inertia for the three 2-quasiparticle bands in the odd-odd nuclei $^{154, 156}$Pm, their configurations and bandhead spins have been assigned properly. For the 2-quasiparticle band in $^{154}$Pm, the configuration is assigned as $pi5/2^-[532]otimes u3/2^-[521]$ ($K^pi=4^+$) with the bandhead spin $I_0=4hbar$. In $^{156}$Pm, the same configuration and bandhead spin assignments have been made for the 2-quasiparticle band with lower excitation energy. The configuration $pi5/2^+[413]otimes u5/2^+[642]$ ($K^pi=5^+$) with the bandhead spin $I_0=5hbar$ is assigned for that with higher excitation energy.