No Arabic abstract
Well-sampled optical lightcurves of 146 gamma-ray bursts (GRBs) are compiled from the literature. By empirical fitting we identify eight possible emission components and summarize the results in a synthetic lightcurve. Both optical flare and early shallow-decay components are likely related to long-term central engine activities. We focus on their statistical properties in this paper. Twenty-four optical flares are obtained from 19 GRBs. The isotropic R-band energy is smaller than 1% of $E_{gamma, rm iso}$. The relation between isotropic luminosities of the flares and gamma-rays follows $L^{rm F}_{rm R, iso}propto L_{{gamma}, rm iso}^{1.11pm 0.27}$. Later flares tend to be wider and dimmer, i.e., $w^{rm F}sim t^{rm F}_{rm p}/2$ and $L^{rm F}_{rm R, iso}propto [t^{rm F}_{rm p}/(1+z)]^{-1.15pm0.15}$. The detection probability of the optical flares is much smaller than that of X-ray flares. An optical shallow decay segment is observed in 39 GRBs. The relation between the break time and break luminosity is a power-law, with an index of $-0.78pm 0.08$, similar to that derived from X-ray flares. The X-ray and optical breaks are usually chromatic, but a tentative correlation is found. We suggest that similar to the prompt optical emission that tracks $gamma$-rays, the optical flares are also related to the erratic behavior of the central engine. The shallow decay component is likely related to a long-lasting spinning-down central engine or piling up of flare materials onto the blastwave. Mixing of different emission components may be the reason of the diverse chromatic afterglow behaviors.
We continue our systematic statistical study on optical afterglow data of gamma-ray bursts (GRBs). We present the apparent magnitude distributions of early optical afterglows at different epochs (t= 10^2 s, t = 10^3 s, and 1 hour) for the optical lightcurves of a sample of 93 GRBs (the global sample), and for sub-samples with an afterglow onset bump or a shallow decay segment. For the onset sample and shallow decay sample we also present the brightness distribution at the peak time t_{p} and break time t_{b}, respectively. All the distributions can be fit with Gaussian functions. We further perform Monte Carlo simulations to infer the luminosity function of GRB optical emission at the rest-frame time 10^3 seconds, t_{p}, and t_{b}, respectively. Our results show that a single power-law luminosity function is adequate to model the data, with indices -1.40+/-0.10, -1.06+/- 0.16, and -1.54+/- 0.22, respectively. Based on the derived rest-frame 10^3 s luminosity function, we generate the intrinsic distribution of the R-band apparent magnitude M_{R} at the observed time 10^{3} seconds post trigger, which peaks at M_{R}=22.5 mag. The fraction of GRBs whose R-band magnitude is fainter than 22 mag, and 25 mag and at the observer time 10^3 seconds are ~63% and ~25%, respectively. The detection probabilities of the optical afterglows with ground-based robotic telescopes and UVOT onboard {Swift} are roughly consistent with that inferred from this intrinsic M_{R} distribution, indicating that the variations of the dark GRB fraction among the samples with different telescopes may be due to the observational selection effect, although the existence of an intrinsically dark GRB population cannot be ruled out.
We continue our systematic statistical study of various components in gamma-ray burst (GRB) optical lightcurves. We decompose the early onset bump and the late re-brightening bump with empirical fits and analyze their statistical properties. Among the 146 GRBs that have well-sampled optical lightcurves, the onset and re-brightening bumps are observed in 38 and 26 GRBs, respectively. It is found that the typical rising and decaying slopes for both the onset and re-brightening bumps are ~1.5 and -1.15, respectively. No early onset bumps in the X-ray band are detected to be associated with the optical onset bumps, while an X-ray re-brightening bump is detected for half of the re-brightening optical bumps. The peak luminosity is anti-correlated with the peak time, L_ppropto t_{p}^{-1.81+/-0.32} and L_ppropto t_{p}^{-0.83+/-0.17} for the onset and re-brightening bumps, respectively. Both L_p and the isotropic energy release of the onset bumps are correlated with E_{gamma, iso}, whereas no similar correlation is found for the re-brightening bumps. Taking the onset bumps as probes for the properties of the fireballs and their ambient medium, we find that the typical power-law index of the relativistic electrons is 2.5 and the medium density profile behaves as npropto r^{-1} within the framework of the synchrotron external shock models. With the medium density profile obtained from our analysis, we also confirm the correlation between initial Lorentz factor (Gamma_0) and E_{gamma, iso} in our previous work. The jet component that produces the re-brightening bump seems to be on-axis and independent of the prompt emission jet component. Its typical kinetic energy budget would be about one order of magnitude larger than the prompt emission component, but with a lower Gamma_0, typically several tens.
We present $gamma$-ray, X-ray, ultraviolet, optical, and near-infrared light curves of 33 $gamma$-ray bright blazars over four years that we have been monitoring since 2008 August with multiple optical, ground-based telescopes and the Swift satellite, and augmented by data from the Fermi Gamma-ray Space Telescope and other publicly available data from Swift. The sample consists of 21 flat-spectrum radio quasars (FSRQs) and 12 BL Lac objects (BL Lacs). We identify quiescent and active states of the sources based on their $gamma$-ray behavior. We derive $gamma$-ray, X-ray, and optical spectral indices, $alpha_gamma$, $alpha_X$, and $alpha_o$, respectively ($F_ upropto u^alpha$), and construct spectral energy distributions (SEDs) during quiescent and active states. We analyze the relationships between different spectral indices, blazar classes, and activity states. We find (i) significantly steeper $gamma$-ray spectra of FSRQs than for BL Lacs during quiescent states, but a flattening of the spectra for FSRQs during active states while the BL Lacs show no significant change; (ii) a small difference of $alpha_X$ within each class between states, with BL Lac X-ray spectra significantly steeper than in FSRQs; (iii) a highly peaked distribution of X-ray spectral slopes of FSRQs at $sim-$0.60, but a very broad distribution of $alpha_X$ of BL Lacs during active states; (iv) flattening of the optical spectra of FSRQs during quiescent states, but no statistically significant change of $alpha_o$ of BL Lacs between states; and (v) a positive correlation between optical and $gamma$-ray spectral slopes of BL Lacs, with similar values of the slopes. We discuss the findings with respect to the relative prominence of different components of high-energy and optical emission as the flux state changes.
Long $rm gamma$-ray bursts (GRBs) are produced by the dissipation of ultra-relativistic jets launched by newly-born black holes after a collapse of massive stars. Right after the luminous and highly variable $gamma$-ray emission, the multi-wavelength afterglow is released by the external dissipation of the jet in circumburst medium. We report the discovery of very bright ($rm sim 10$ mag) optical emission $rm sim 28$ s after the explosion of the extremely luminous and energetic GRB 210619B located at redshift 1.937. Early multi-filter observations allowed us to witness the end of the shock wave propagation into the GRB ejecta. We observed the spectral transition from a bright reverse to the forward shock emission, demonstrating that the GRB multi-wavelength emission is originated from a narrow and highly magnetised jet propagating into a rarefied interstellar medium. We also find evidence of an additional component of radiation, coming from the jet wings which is able explain the uncorrelated optical/X-ray emission.
The prompt emission in long gamma-ray bursts arises from within relativistic outflows created during the collapse of massive stars, and the mechanism by which radiation is produced may be either magnetically- or matter-dominated. In this work we suggest an observational test of a magnetically-dominated Poynting flux model that predicts both gamma-ray and low-frequency radio pulses. A common feature among early light curves of long gamma-ray bursts are X-ray flares, which have been shown to arise from sites internal to the jet. Ascribing these events to the prompt emission, we take an established Swift XRT flare sample and apply a magnetically-dominated wind model to make predictions for the timing and flux density of corresponding radio pulses in the ~100-200 MHz band observable with radio facilities such as LOFAR. We find that 44 per cent of the X-ray flares studied would have had detectable radio emission under this model, for typical sensitivities reached using LOFARs rapid response mode and assuming negligible absorption and scattering effects in the interstellar and intergalactic medium. We estimate the rate of Swift gamma-ray bursts displaying X-ray flares with detectable radio pulses, accessible to LOFAR, of order seven per year. We determine that LOFAR triggered observations can play a key role in establishing the long debated mechanism responsible for gamma-ray burst prompt emission.