Do you want to publish a course? Click here

Irreducible representations of the quantum Weyl algebra at roots of unity given by matrices

203   0   0.0 ( 0 )
 Added by Linhong Wang
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

To describe the representation theory of the quantum Weyl algebra at an $l$th primitive root $gamma$ of unity, Boyette, Leyk, Plunkett, Sipe, and Talley found all nonsingular irreducible matrix solutions to the equation $yx-gamma xy=1$, assuming $yx eq xy$. In this note, we complete their result by finding and classifying, up to equivalence, all irreducible matrix solutions $(X, Y)$, where $X$ is singular.



rate research

Read More

Motivated by recent advances in the categorification of quantum groups at prime roots of unity, we develop a theory of 2-representations for 2-categories enriched with a p-differential which satisfy finiteness conditions analogous to those of finitary or fiat 2-categories. We construct cell 2-representations in this setup, and consider 2-categories stemming from bimodules over a p-dg category in detail. This class is of particular importance in the categorification of quantum groups, which allows us to apply our results to cyclotomic quotients of the categorifications of small quantum group of type $mathfrak{sl}_2$ at prime roots of unity by Elias-Qi [Advances in Mathematics 288 (2016)]. Passing to stable 2-representations gives a way to construct triangulated 2-representations, but our main focus is on working with p-dg enriched 2-representations that should be seen as a p-dg enhancement of these triangulated ones.
165 - P. Bouwknegt , K. Pilch 1997
We discuss some aspects of the representation theory of the deformed Virasoro algebra $virpq$. In particular, we give a proof of the formula for the Kac determinant and then determine the center of $virpq$ for $q$ a primitive N-th root of unity. We derive explicit expressions for the generators of the center in the limit $t=qp^{-1}to infty$ and elucidate the connection to the Hall-Littlewood symmetric functions. Furthermore, we argue that for $q=sqrtN{1}$ the algebra describes `Gentile statistics of order $N-1$, i.e., a situation in which at most $N-1$ particles can occupy the same state.
In this paper we describe some Leibniz algebras whose corresponding Lie algebra is four-dimensional Diamond Lie algebra $mathfrak{D}$ and the ideal generated by the squares of elements (further denoted by $I$) is a right $mathfrak{D}$-module. Using description cite{Cas} of representations of algebra $mathfrak{D}$ in $mathfrak{sl}(3,{mathbb{C}})$ and $mathfrak{sp}(4,{mathbb{F}})$ where ${mathbb{F}}={mathbb{R}}$ or ${mathbb{C}}$ we obtain the classification of above mentioned Leibniz algebras. Moreover, Fock representation of Heisenberg Lie algebra was extended to the case of the algebra $mathfrak{D}.$ Classification of Leibniz algebras with corresponding Lie algebra $mathfrak{D}$ and with the ideal $I$ as a Fock right $mathfrak{D}$-module is presented. The linear integrable deformations in terms of the second cohomology groups of obtained finite-dimensional Leibniz algebras are described. Two computer programs in Mathematica 10 which help to calculate for a given Leibniz algebra the general form of elements of spaces $BL^2$ and $ZL^2$ are constructed, as well.
In the present paper we describe Leibniz algebras with three-dimensional Euclidean Lie algebra $mathfrak{e}(2)$ as its liezation. Moreover, it is assumed that the ideal generated by the squares of elements of an algebra (denoted by $I$) as a right $mathfrak{e}(2)$-module is associated to representations of $mathfrak{e}(2)$ in $mathfrak{sl}_2({mathbb{C}})oplus mathfrak{sl}_2({mathbb{C}}), mathfrak{sl}_3({mathbb{C}})$ and $mathfrak{sp}_4(mathbb{C})$. Furthermore, we present the classification of Leibniz algebras with general Euclidean Lie algebra ${mathfrak{e(n)}}$ as its liezation $I$ being an $(n+1)$-dimensional right ${mathfrak{e(n)}}$-module defined by transformations of matrix realization of $mathfrak{e(n)}.$ Finally, we extend the notion of a Fock module over Heisenberg Lie algebra to the case of Diamond Lie algebra $mathfrak{D}_k$ and describe the structure of Leibniz algebras with corresponding Lie algebra $mathfrak{D}_k$ and with the ideal $I$ considered as a Fock $mathfrak{D}_k$-module.
113 - Toshiyuki Tanisaki 2021
We give a proof of Lusztigs conjectural multiplicity formula for non-restricted modules over the De Concini-Kac type quantized enveloping algebra at $ell$-th root of unity, where $ell$ is an odd prime power satisfying certain reasonable conditions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا